
Large-scale weighted sequence alignment for the study of intertextuality in
Finnic oral folk poetry

Maciej Janicki

University of Helsinki, Finland

Corresponding author: Maciej Janicki , maciej.janicki@helsinki.fi

Abstract
The digitization of large archival collections of oral folk poetry in Finland and Estonia has opened
possibilities for large-scale quantitative studies of intertextuality. As an initial methodological step in this
direction, I present a method for pairwise line-by-line comparison of poems using the weighted sequence
alignment algorithm (a.k.a. ‘weighted edit distance’). The main contribution of the paper is a novel
description of the algorithm in terms of matrix operations, which allows for much faster alignment of a
poem against the entire corpus by utilizing modern numeric libraries and GPU capabilities. This way we
are able to compute pairwise alignment scores between all pairs from among a corpus of over 280,000
poems. The resulting table of over 40 million pairwise poem similarities can be used in various ways to
study the oral tradition. Some starting points for such research are sketched in the latter part of the article.

Keywords
algorithm optimization; alignment; edit distance; oral tradition; poetry; text similarity

I INTRODUCTION

The digitization of vast collections of Finnic Kalevalametric oral folk poetry has opened new pos-
sibilities for large-scale studies utilizing computational and quantitative methods. The collections
Suomen Kansan Vanhat Runot1 (Old Poems of the Finnish People) and Eesti Regilaulude And-
mebaas2 (Estonian Runosongs’ Database) contain almost 100,000 items (texts) each. Recently
those two national collections have been combined into a single corpus, as well as extended with
further archival materials and literary works, to a collection of over 280,000 items within the
Digital Humanities project FILTER3 [Kallio et al., 2023].

Texts collected from oral tradition are usually recordings of a performance. Motifs and storylines
circulate within the tradition and are put together by a singer to a unique combination [Honko,
2000] – even two performances of the same epic cycle by the same singer may differ considerably.
The process of oral transmission, performance and collection leads to a text corpus containing
a plenty of partial similarities, but often in an obfuscated form, which is not trivial to detect
automatically.

In this article, I consider the problem of automatic detection of textual similarities in the above-
mentioned corpus. This is the first step towards a large-scale quantitative study of intertextuality,

1https://skvr.fi
2https://www.folklore.ee/regilaul/andmebaas/
3Formulaic Intertextuality, Thematic Networks and Poetic Variation across Regional Cultures of Finnic Oral

Poetry. Academy of Finland grant No. 333138.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

1 http://jdmdh.episciences.org

https://skvr.fi
https://www.folklore.ee/regilaul/andmebaas/
http://jdmdh.episciences.org


which could give new insights into the Finnic oral tradition. Building on earlier work on
measuring line similarity and detecting equivalent lines [Janicki et al., 2023], here I apply the
weighted sequence alignment algorithm to align texts line-by-line and measure their similarity
based on the alignment. The main challenge is to optimize the algorithm so that computing
alignments of all text pairs within a large collection becomes feasible.

The present article is an extended version of a short conference paper [Janicki, 2022]. While
the former focused on general and technical description of the algorithm optimization, here I
provide more information on the context in which it is applied. However, the optimization of the
alignment algorithm remains the main contribution of this paper as well. An implementation of
the resulting algorithm is publicly available.4

II RELATED WORK

Weighted Sequence Alignment. The Weighted Sequence Alignment algorithm was presented
independently by at least Needleman and Wunsch [1970] and Wagner and Fischer [1974]
and is based on the concept of ‘edit distance’ [Levenshtein, 1966]. As the algorithm is quite
simple, numerous libraries contain an implementation of it. However, most available Python
packages for sequence alignment are either designed specifically for biological sequences (like
e.g. Bio.Align5) or very simple (and thus inefficient) pure-Python implementations (like e.g.
alignment6, edit-distance7). A notable example of a library allowing for alignment of
sequences of numeric vectors using a custom similarity measure, as well as providing a fast C++
implementation, is pyalign8. However, as the benchmarks in Janicki [2022] have shown, it
does not provide sufficient performance to solve the problems addressed here.

Optimizations to the base algorithm are typically based on restricting the allowed edit distance
to a small number and pre-selecting or filtering candidate pairs [e.g. Bocek et al., 2007, Soru and
Ngonga Ngomo, 2013]. For handling large numbers of strings, also finite state automata have
been used Schulz and Mihov [2002]. However, these methods are only applicable to sequences
of symbols from a finite alphabet.

Text alignment and reuse. The concept of text alignment for the purpose of comparison of
similar texts has been present in Digital Humanities for a long time. Examples of it include the
Versioning Machine [Schreibman et al., 2003], the Tesserae project for aligning Latin poetry
[Coffee et al., 2013], innovative visualizations for medieval French poetry [Jänicke and Wrisley,
2017], or recently the Reception Reader for browsing text reuse in a corpus of early modern
English publications [Rosson et al., 2023]. The quantitative study of intertextuality is an emerging
research subject that builds upon automatic discovery of similarities in large collections of text
or other media (see Forstall and Scheirer [2019] for a general introduction).

III OPTIMIZING THE WEIGHTED SEQUENCE ALIGNMENT ALGORITHM

3.1 The base algorithm

The starting point for our procedure is the weighted edit distance algorithm described by Wagner
and Fischer [1974]. However, while the base algorithm is formulated in terms of ‘distance’ (thus

4https://github.com/maciejjan/matrix-align
5https://biopython.org/docs/1.75/api/Bio.Align.html
6https://pypi.org/project/alignment/
7https://pypi.org/project/edit-distance/
8https://pypi.org/project/pyalign/

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

2 http://jdmdh.episciences.org

https://github.com/maciejjan/matrix-align
https://biopython.org/docs/1.75/api/Bio.Align.html
https://pypi.org/project/alignment/
https://pypi.org/project/edit-distance/
https://pypi.org/project/pyalign/
http://jdmdh.episciences.org


0 meaning complete similarity and 1 complete dissimilarity of individual units), the formulation
applied here interprets the weight as ‘similarity’ (thus 1 meaning complete similarity (identity)
and 0 complete dissimilarity). This means that also the weight of insertions and deletions is
0, which is a necessary assumption for the following optimization. In this formulation, we are
looking for the maximum-weight alignment, which detects as much overlap between the two
sequences as possible.

Let n1, n2 denote the length of the sequences to be aligned, and S denote the n1 × n2 matrix
of similarities9 between individual units of both sequences. We are going to compute another
n1 × n2 matrix D, with di,j being the optimal alignment weight of the first i elements of the first
sequence and first j elements of the second sequence. The alignment matrix D can be computed
using the following recursive formula [cf. Wagner and Fischer, 1974]:

di,j = max


di−1,j

di,j−1

di−1,j−1 + si,j

 (2)

where the considered values amount to the edit operations of deletion, insertion and substitution,
respectively. After computing the matrix D, the weight of the optimal alignment can be found in
its bottom-right corner, while the alignment itself can be retrieved by backtracing, from which
direction the maximum value was chosen at each step.

In the subsequent presentation we are going to adapt the terminology to the use case described
in this article, thus speaking of ‘poems’ instead of ‘sequences’ and ‘verses’ instead of ‘units’.
However, the same sequence alignment algorithm could be applied in different fields (e.g.
bioinformatics), where the sequences and units could be defined differently.

3.2 Optimization

Our optimization is based on the idea that computation on vectors and matrices is faster than
computing individual numbers iteratively, especially when using a GPU. We will thus group the
computations in two ways:

1. Use vector operations to compute entire rows of the alignment matrix.
2. Use matrix operations to compute the next row of alignment matrices between one poem

and all other poems at once.

Optimization 1. Because in the formula (2) every cell of the matrix D depends on the cell
to the left, we cannot use it directly to compute entire rows. However, we can break down this
computation into two stages:

d∗i,j = max {di−1,j ; di−1,j−1 + si,j} (3)

di,j = max
{
d∗i,j ; di,j−1

}
= max

k≤j
d∗i,k (4)

9In our use case, we use the cosine similarity of character bigrams as a similarity measure of lines, following
Janicki et al. [2023]. However, the alignment algorithm only requires a measure that produces a positive number,
with 0 meaning ‘no similarity’.

Because cosine similarity below 0.5 is easily achieved by unrelated lines and thus such numbers do not correspond
to any real similarity, we apply an additional rescaling step as follows:

Srescaled = max

{
0,

Scos − 0.5

0.5

}
(1)

with Scos being the matrix of original cosine similarities, and Srescaled the similarity matrix that we use in the
algorithm.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

3 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Now (3) depends only on the previous row, so it can be computed row-wise, whereas (4) is
a cumulative maximum operation. Let fmax(·; ·) denote the element-wise maximum of two
vectors or matrices and cummax(·) the cumulative maximum (row-wise in case of matrices).
Then we can rewrite (3, 4) in vector notation as:

d∗i,1:n = fmax
(

d(i−1),1:n

d(i−1),0:(n−1) + si,1:n

)
(5)

di,0:n = cummax
(
d∗i,0:n

)
(6)

Note that the latter step (cummax) relies on the fact that the insertion weight is 0, and the
optimization could not be applied otherwise.

Optimization 2. Assuming that we are computing the alignment between a single target
poem and multiple source poems, the next row for each source poem can be computed at once.
We will stack the matrices S and D vertically, so that the columns correspond to the verses of
the target poem and the rows to the verses of all source poems concatenated.10 Let B denote
a set of sequence boundaries, i.e. row indices in the stacked matrices, at which a new poem
begins. Further, let m,n denote the (zero-based) indices of the last row and column of the D and
S matrices.

Algorithm 1 Alignment of a single poem against multiple others.

1: DB,0:n ← cummax(SB,0:n)
2: I ← (B + 1) \B
3: while I ̸= ∅ do
4: DI,0 ← fmax (DI−1,0, SI,0)

5: DI,1:n ← fmax
(

DI−1,1:n

DI−1,0:n−1 + SI,1:n

)
6: DI,0:n ← cummax(DI,0:n)
7: I ← (I + 1) \B \ {m+ 1}
8: end while

Algorithm 1 computes the stacked alignment matrix D. Each iteration computes the next row
of the alignment matrix for each source poem simultaneously. The set I contains the indices
of currently computed rows. The notation like I + 1 for a set of indices is a shorthand for
{i + 1 : i ∈ I}. Once an index reaches the start of a new poem or the end of the corpus, it is
removed from the set (line 7). The first row for each poem (line 1) and the first column (line 4)
are processed separately as they cannot refer to the previous row or column, respectively.

The detailed benchmarks demonstrating the effect of the optimization are provided in [Janicki,
2022, sec. 3]. The version using both above optimizations on GPU is at least 13x faster than
pairwise comparison using pyalign and at least 50x faster than the naïve Python implementa-
tion.11

10Because the alignment is symmetric, assuming that the goal is to compute alignment between all poem pairs
and thus we will take every poem in turn to be a target poem, it suffices if the source poems all follow the target
poem in the corpus (rather than the entire rest of the corpus).

11The reported factors are for dataset sizes of 10,000 and 2,000 poems, respectively. The speedup factor grows
with the size of the dataset and for larger sizes the less efficient computations could not be performed in reasonable
time.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

4 http://jdmdh.episciences.org

http://jdmdh.episciences.org


3.3 Similarity measures

After running Algorithm 1, we can extract from the last column of the matrix D the vector DQ,n,
with Q = (B \ {0} ∪ {m+ 1})− 1 being the set of row indices corresponding to the last verse
of each poem. Then, DQ,n represents the weight of the optimal alignment (sum of similarities of
all aligned verse pairs) between the target poem and every other poem in the corpus. We will call
it the raw similarity.

For given two poems, let sraw denote their raw similarity. This figure tells us roughly how many
aligned verses do the two poems have in common (with non-identical verse pairs counting as
less than one, adequately to their similarity). However, it is not very informative as a similarity
measure because we don’t know how large part of the poems the aligned verses represent. Thus,
let n1, n2 denote the lengths of the two poems. The one-sided similarities:

s1 =
sraw

n1

(7)

s2 =
sraw

n2

(8)

tell us, how large part of either of the poems is contained in the other one.

Finally, in order to obtain a symmetric similarity measure (denoted simply by s), we calculate
the harmonic mean of both one-sided similarities, which tells us how large part of both poems is
aligned if they are displayed side-by-side:

s =
2

1
s1
+ 1

s2

=
2sraw

n1 + n2

(9)

3.4 Alignment extraction

For some applications, it might be necessary to store not just the poem-level similarity figures,
but also the verse-by-verse alignment. Similarly to the base algorithm, the optimal alignment can
be easily retrieved from the matrix D and also this step can be expressed as matrix operations.

In the original Wagner-Fischer algorithm the alignment is extracted by starting in the bottom-
right corner of the alignment matrix D and moving at every step in the direction, from which the
maximum in formula (2) was taken (top, left or top-left), until the top-left corner of the matrix is
reached. In the optimized version we are going to apply the same approach, but simultaneously
for each poem represented in the matrix D.

The procedure is illustrated in Algorithm 2. It returns two vectors: a1:m contains for each of
the m lines in the corpus the number of the line from the target poem that it is aligned to (i.e.
a number between 1 and n), or −1 if it is not aligned to any. The corresponding vector w1:m

returns the weights (similarities) of the aligned pairs, or 0 for unaligned lines. Thus the vectors
a1:m and w1:m together represent the alignment between the target poem and all other poems in
the corpus.

We see the alignment matrix D as a vertical concatenation of component matrices corresponding
to poem pairs, with B pointing to the row indices where a new component starts. When extracting
the alignments, we traverse all components simultaneously. Thus, the vectors i and j contain
the current row and column indices in all component matrices. They are initialized to the
bottom-right corners of the components, i.e. row indices to the indices preceding the start of a
new component (line 3) and column indices to the rightmost column (line 4).

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

5 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Algorithm 2 Extraction of the alignment from the matrix D.
1: a0:m ← −1
2: w0:m ← 0
3: i0:m ← (B − 1) \ {0} ∪ {m}
4: j0:m ← n
5: while length(i) > 0 do
6: u← (i /∈ B)
7: v ← (j > 0)
8: q ← (Di,j = Di−1,j) ∗ u
9: r ← (Di,j = Di,j−1) ∗ v ∗ (1− q)

10: s← (1− q) ∗ (1− r)
11: ais ← js
12: wis ← dis,js − dis−1,js−1 ∗ us ∗ vs
13: i← i− q − s
14: j ← j − r − s
15: k ← (i /∈ (B − 1) \ {0}) ∗ (i ≥ 0) ∗ (j ≥ 0)
16: i← ik
17: j ← jk
18: end while

In a single iteration of the loop, we determine whether to shift the indices to the left, top or
top-left. For that we introduce the following auxiliary variables: u checks whether the current
position is not in the topmost row of the component, and v whether it is not in the leftmost
column. Both are binary vectors of the same size as i and j, containing a 1 at positions where
the condition is fulfilled and 0 elsewhere. Using those, we can calculate further binary vectors: q
indicates positions in which the optimal value came from the top, r those where it came from the
left and s those where it came from the top-left. Note that at each position, exactly one of q, r, s
has to be 1. If the value at the current position is equal to the one above it, and the latter is in the
same component matrix (i.e. the current row is not the topmost), then the optimal value came
from above (line 8). Otherwise, if the current value is equal to the one of the left (provided that
there is a column to the left), then it came from the left (line 9). Finally, in all other cases it has
to come from the top-left (line 10).

The indices of aligned verse pairs are given by is, js.12 We use them to set the vectors a and
w at the currently considered positions (lines 11-12), with ‘∗’ denoting element-wise vector
multiplication. Then we shift the indices according to the direction from which the optimal
values came (lines 13-14). Finally, we remove from the vectors i, j the indices that have crossed
the boundary of their component (lines 15-17). We repeat the procedure until i, j are empty,
which means that all components have been traversed.

IV QUANTITATIVE OVERVIEW

The algorithm above has been run on our corpus of 284,331 poems, totalling 4,557,870 verses. I
have restricted the size of the results by applying thresholds: for each pair of poems, the criteria
sraw ≥ 1 and max{s1, s2} ≥ 0.1 had to be fulfilled (see Sec. 3.3). As we haven’t designed a
formal evaluation method yet, those criteria were intended to be loose and prioritize completeness
over correctness, as tighter filtering criteria can always be applied afterwards.

12For a vector i and a binary vector s of the same size, is means the elements of i at positions, at which s = 1.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

6 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Figure 1: The distribution of symmetric similarity scores (left: histogram, right: rank-value plot).

The computation was split into 2 parallel processes and took around 70 hours on a GPU-equipped
computing cluster. The result were two tables: a table of poem similarities containing 41,059,771
poem pairs and a table of verse-level alignments containing 179,735,571 aligned verse pairs. A
detailed quantitative analysis of those results is expected to give new insights into the Finnic oral
tradition: the spread of motifs, poetic formulas and larger text passages across time and place.
Below I present a short introductory overview of the results, while in Sec. V I sketch some ideas
for a more detailed analysis, which will be developed in the following publications.

Figure 1 shows the overall distribution of symmetric similarity scores. The peak appears to be
around 0.1, which is probably the product of the filtering criteria (max{s1, s2} ≥ 0.1). However,
all similarity ranges include large numbers of pairs – e.g. from the right-hand plot it can be read
that there is almost 10 million pairs with similarity above 0.4.13 Figure 2 shows the number of
neighbors (entries in the similarity table) per poem as a rank plot. The vast majority of poems
has between 10 and 1000 neighbors. Finally, Figure 3 shows the distribution of similarity scores
of a poem to its closest neighbor. It is much more even than the one shown in Fig. 1, but it also
appears bimodal, with the mode around 1 corresponding to poems that have an exact duplicate
(with possible slight spelling differences) and the one around 0.2 to similarities typical for oral
transmission. The overall distributions show that textual similarity is abundantly present in the
oral folk poetry collections.

In addition to poem texts the collections contain metadata, like the place in which the poem
was collected (parish and county), name of the collector and year of the collection. Further, the
SKVR and ERAB corpora contain manually constructed type indices, which classify poems as
containing one or more types, i.e. recurring semantic entities (e.g. an epic story, a lyrical motif, a
song for a certain occasion, a charm for a certain purpose).14 By comparing the computed textual
similarity with the metadata fields, we can get an overall picture of the relationships between the
texts recognized as similar.

In Figure 4 the pairs of similar poems were divided into groups, based on the symmetric similarity

13The rank plot is made from the list of values sorted in decreasing order, by plotting the position in the list (rank)
against the value.

14While the SKVR type index is considered complete, the ERAB index is work in progress and might be missing
annotations for a significant number of poems.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

7 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Figure 2: Number of neighbors per poem (rank-value plot; poems with no neighbors excluded).

Figure 3: The distribution of similarity scores to the closest neighbor, by poem.

Figure 4: Matching metadata entries for pairs of similar poems (left: SKVR, right: ERAB).

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

8 http://jdmdh.episciences.org

http://jdmdh.episciences.org


score rounded to one significant digit (e.g. all pairs with similarity between 0.2 and 0.3 were
assigned to the group ‘0.2’). For each group we measure the proportion of pairs with equal values
in the various metadata fields (county, parish, type, collector, volume15). It is generally expected
that the curves go up, i.e. with increasing textual similarity there is an increasing chance that the
poems were collected in the same place by the same collector and are similar in terms of content
(types). However, looking at the exact values, one can see that the similarity is by far not limited
to poem pairs coming from the same parish, or annotated with the same types.

V POSSIBLE APPLICATIONS

The poem similarity table can be used for studying oral poetry from different angles. While on
one hand it is a large quantitative dataset enabling global views on the textual similarity within
entire collections, on the other hand the numbers are interpretable, i.e. they can be traced to
individual pairs of poems, the similarity of which can be inspected by close-reading.

Below I list several subjects currently being studied in the FILTER project, in which the automat-
ically computed similarity is highly useful. As each of them requires combining a fine-grained
quantitative analysis with qualitative research on the folklorist side, they are presented here in a
very abbreviated description, while they will be developed in further articles.

Interactive browsing. For the interactive exploration of the results, we have designed a
Web user interface called Runoregi16 (introduced by Janicki et al. 2023), which has been used
and developed constantly for the last 3 years. The algorithm in the present paper contributes a
precomputed table of poem similarities, which is displayed in Runoregi as a ‘Similar poems’
box (Fig. 5, bottom-left), the percentage scores being the symmetric similarity (9). Clicking on
one of the poems in the list leads to an alignment view (Fig. 5, right).

The similarity scores can also be viewed interactively in other ways. For example to see
relationships within a larger set of poems simultaneously – e.g. all poems sharing a certain type
annotation – we can apply hierarchical clustering based on the similarity scores (Fig. 6, left).
The inner nodes of the resulting dendogram are enriched with links (blue squares) leading to a
view that shows the multiple sequence alignment of all poems in a given subtree (Fig. 6, right).
Another option is a network view showing a breadth-first search starting from a certain poem
(Fig. 7).

Completing the typologies. The similarity table can be used to propose type annotations
for poems that have none. As previously mentioned, the type index of the Estonian Runosongs’
Database is work in progress and currently there are 37,560 poems (34%) with no type annotation.
Although the SKVR index is considered completed, still 1,263 poems without annotation (1.4%)
were found. Finally, the part of the corpus containing unpublished Finnish archival materials
consists of 85,248 poems with no indexing, but most of them bearing similarity to some poem
from SKVR.

The work on type indices can be facilitated by proposing for each unannotated poem the types
of its closest annotated neighbor (often a near-duplicate). Such a list still needs to be reviewed
manually. This workflow is currently being tested on the small unannotated part of SKVR.

Oral-literary relationships. In addition to materials collected directly from oral tradition,
our corpus contains also published works – from small compilations like D. E. D. Europaeus’

15The ‘volume’ is given for SKVR, which has been published as a printed collection. The book volumes are
arranged by county, which is why the curve is very similar to the one for county.

16https://runoregi.rahtiapp.fi

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

9 http://jdmdh.episciences.org

https://runoregi.rahtiapp.fi
http://jdmdh.episciences.org


Figure 5: The Runoregi user interface showing a single poem with a list of similar poems (left) and an
alignment of two similar poems (right). Note: the images were edited by removing or rearranging some
UI elements to simplify the presentation.

Figure 6: Dendrogram (left) and multi-poem alignment (right) views in Runoregi.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

10 http://jdmdh.episciences.org

http://jdmdh.episciences.org


Figure 7: The poem network view in Runoregi showing breadth-first search starting from the poem SKVR
XIII1 8 (in yellow).

Pieni Runon-seppä to the national epic Kalevala. These works were based on oral poetry, but
already shortly after their publication they became highly influential as fragments of them were
learned by heart and reintroduced to the oral tradition. By studying the poem similarities and
alignments from the periods both before and after the publication of a certain work we can gain
new insights into this oral-literary-oral circuit.

For example, Fig. 8 shows the areal distribution of poems similar to the poem Elkää sanoko
huolettomaksi (Do not say [I] have no worries) in Elias Lönnrot’s Kanteletar (number 52 in
book 1). The map on the left side shows poems collected before the publication of Kanteletar
(1840), while the map on the right poems collected in 1840 and later. Caution is required in
interpreting such maps: they do not necessarily show that the poem has spread to a wider area,

Figure 8: The areal distribution of poems similar to Kanteletar 1:52 Elkää sanoko huolettomaksi before
1840 (left) vs. 1840 and after (right).

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

11 http://jdmdh.episciences.org

http://jdmdh.episciences.org


as the tradition of some areas (notably Ingria) was only collected at a later period. However, this
example shows how aggregate views and automatically computed similarities help to navigate
through the collections and select relevant material for close reading.

Similar research has earlier been done manualy, mostly with focus on prominent literary works.
Notably, Väinö Kaukonen traced the sources and earlier versions of Elias Lönnrot’s works
Kalevala and Kanteletar verse by verse [Kaukonen, 1956, 1984] [see also Hämäläinen, 2020].
A question of interest for folkloristic research is for example, how many lines or what kinds of
story patterns did individual prominent singers contribute to the published works.

Northern-Southern Finnic commonalities. The collection and study of oral poetry has
usually been done within national traditions (Finnish and Estonian). Thus, little is known
about the commonalities of the Northern Finnic (Finnish, Karelian, Ingrian) and the Southern
Finnic (Estonian, South Estonian) language areas. While the discovery of such similarities is
especially difficult due to linguistic and orthographic differences, the ability of the algorithm
to try the alignment of all poem pairs and work with low similarity thresholds allows us to
detect similarities crossing the language boundary. Table 1 provides an example of such result:
a fragment of the song The maid to be ransomed (Lunastettava neito / Lunastatav neiu) in
Ingrian-Finnish and Estonian versions, with very similar structure indicating a close relationship.
The rightmost column shows the bigram-based verse similarity (non-rescaled), with values above
the 0.5 threshold in bold. The similarity of those pairs can be thus detected automatically.

Ingrian-Finnish Estonian translation sim.
Lilla istu kamperissa, Lilla istus kammeris, The girl was sitting in a chamber, .79
Aik’ oli ikäv uottaa, Tal aeg oli igav oota. It was a sad time waiting. .46
Näki vennan reissivanna Ta nägi venda sõudema She saw a brother [travelling / rowing] .20
Pitkin mere rantaa. Seal üle mereranna. Along the sea coast. .45
“Rikas venna, rakas venna, “Kulla venda, rikas venda ‘Rich brother, [dear / golden] brother .64
Lunast minnuu täältä vällää!” Lunasta mu südant!” Ransom [me from here / my heart]!’ .31
“Millä mie lunassan, “Kellega ma lunastan, ‘With what do I ransom you, .41
Kui miull’ ei ole varraa?” Kui mul ei ole raha.” When I don’t have money?’ .73
“On siull’ koton kolme miekkaa, “Sul on kodu kolmi mõeka, ‘You’ve got three swords at home, .66
Pane niist’ yksi pantiks!” Pane üks neist pandiks.” Pawn one of them!’ .74
“Enne mie luovun siusta “Ennem mina lahkun õekesest, ‘I’d rather give up [you / a sister], .36
Kui omast’ kolmest’ miekast’.” Kui oma sõjamõegast.” Than my own [three / war] sword[s].’ .44

Table 1: Fragment of an Ingrian-Finnish and Estonian version of the song The maid to be ransomed,
showing the possibility of cross-lingual alignment.

VI CONCLUSION

In this article I presented an optimized version of the weighted sequence alignment algorithm
developed for the purpose of comparing texts in large collections of oral folk poetry. The
algorithm is based on the well-known ‘weighted edit distance’ algorithm, but reformulated in
terms of vector and matrix operations, which allows it to operate on a large number of sequences
(here: texts) simultaneously. This allowed us to compute alignment-based similarity scores for
each pair of texts within a corpus of more than 280,000 items – a task that would not be possible
to accomplish with the standard pairwise sequence comparison. The resulting similarity table
can serve as a basis for a quantitative study of text similarity Finnic oral folk poetry from various
angles, some of which were briefly sketched.

FUNDING

This work was funded by the Academy of Finland research project no. 333138 ‘Formulaic
intertextuality, thematic networks and poetic variation across regional cultures of Finnic oral

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

12 http://jdmdh.episciences.org

http://jdmdh.episciences.org


poetry’.

References
Thomas Bocek, Ela Hunt, and Burkhard Stiller. Fast similarity search in large dictionaries. Technical report,

University of Zurich, 2007.
Neil Coffee, Jean-Pierre Koenig, Shakthi Poornima, Christopher W. Forstall, Roelant Ossewaarde, and Sarah L.

Jacobson. The tesserae project: intertextual analysis of latin poetry. Literary and Linguistic Computing, 28(2),
2013.

Christopher W. Forstall and Walter J. Scheirer. Quantitative intertextuality: analyzing the markers of information
reuse. Springer, 2019.

Lauri Honko. Text as process and practice: the textualization of oral epics. In Lauri Honko, editor, Textualization of
Oral Epics, pages 3–54. De Gruyter Mouton, 2000.

Nina Hämäläinen. Säe säkeeltä: Väinö Kaukosen säetutkimukset kalevalasta. Sananjalka, 62:215–235, 2020.
Maciej Janicki. Optimizing the weighted sequence alignment algorithm for large-scale text similarity computation.

In Proceedings of the 2nd International Workshop on Natural Language Processing for Digital Humanities,
pages 96–100, Taipei, Taiwan, November 2022. Association for Computational Linguistics. URL https:
//aclanthology.org/2022.nlp4dh-1.13.

Maciej Janicki, Kati Kallio, and Mari Sarv. Exploring Finnic oral folk poetry through string similarity. Digital
Scholarship in the Humanities, 38(1):180–194, 2023. URL https://doi.org/10.1093/llc/fqac034.

Stefan Jänicke and David Joseph Wrisley. Visualizing mouvance: Toward a visual analysis of variant medieval text
traditions. Digital Scholarship in the Humanities, 32:ii106–ii123, 2017.

Kati Kallio, Maciej Janicki, Eetu Mäkelä, Jukka Saarinen, Liina Saarlo, and Mari Sarv. Eteneminen omalla vastuulla.
Lähdekriittinen laskennallinen näkökulma sähköisiin kansanrunoaineistoihin. Elore, 30(1):59–90, 2023. URL
https://doi.org/10.30666/elore.126008.

Väinö Kaukonen. Elias Lönnrotin Kalevalan toinen painos. Suomalaisen Kirjallisuuden Seura, Helsinki, 1956.
Väinö Kaukonen. Elias Lönnrotin Kanteletar. Suomalaisen Kirjallisuuden Seura, Helsinki, 1984.
Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics

Doklady, 10(8):707–710, 1966.
Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search for similarities in the

amino acid sequence of two proteins. Journal of Molecular Biology, 48:443–453, 1970.
David Rosson, Eetu Mäkelä, Ville Vaara, Ananth Mahadevan, Yann Ryan, and Mikko Tolonen. Reception reader:

Exploring text reuse in early modern british publications. Journal of Open Humanities Data, 9(5):1–11, 2023.
DOI: https://doi.org/10.5334/johd.101.

Susan Schreibman, Amit Kumar, and Jarom McDonald. The versioning machine. Literary and Linguistic Computing,
18(1):101–107, 2003.

Klaus Schulz and Stoyan Mihov. Fast string correction with levenshtein-automata. International Journal of
Document Analysis and Recognition, 5:67–85, 2002.

Tommaso Soru and Axel-Cyrille Ngonga Ngomo. Rapid execution of weighted edit distances. In Proceedings of
the 8th International Workshop on Ontology Matching, 2013.

Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. Journal of the ACM, 21(I):
168–173, 1974.

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

13 http://jdmdh.episciences.org

https://aclanthology.org/2022.nlp4dh-1.13
https://aclanthology.org/2022.nlp4dh-1.13
https://doi.org/10.1093/llc/fqac034
https://doi.org/10.30666/elore.126008
http://jdmdh.episciences.org

	Introduction
	Related Work
	Optimizing the Weighted Sequence Alignment Algorithm
	The base algorithm
	Optimization
	Similarity measures
	Alignment extraction

	Quantitative Overview
	Possible Applications
	Conclusion

