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2École nationale des chartes, Centre Jean-Mabillon, France

Corresponding author: Sergio Torres , sergio.torres@uni.lu

Abstract
Handwritten Text Recognition (HTR) techniques aim to accurately recognize sequences of characters in
input manuscript images by training artificial intelligence models to capture historical writing features.
Efficient HTR transform digitized manuscript collections into indexed and quotable corpora, providing
valuable research insight for various historical inquiries. However, several challenges must be addressed,
including the scarcity of relevant training corpora, the consequential variability introduced by different
scribal hands and writing scripts, and the complexity of page layouts. This paper presents two models
and one cross-model approach for automatic transcription of Latin and French medieval documentary
manuscripts, particularly charters and registers, written between the 12th and 15th centuries and classi-
fied into two major writing scripts: Textualis (from the late-11th to 13th century) and Cursiva (from the
13th to the 15th century). The architecture of the models is based on a Convolutional Recurrent Neural
Network (CRNN) coupled with a Connectionist Temporal Classification (CTC) loss. The training and
evaluation of the models, involving 120k lines of text and almost 1M tokens, were conducted using three
available ground-truth corpora : The e-NDP corpus, the Alcar-HOME database and the Himanis project.
This paper describes the training architecture and corpora used, while discussing the main training chal-
lenges, results, and potential applications of HTR techniques on medieval documentary manuscripts.

Keywords
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I INTRODUCTION

Recent advancements in Handwritten Text Recognition (HTR) techniques, along with increased
availability of ground-truth corpora, have facilitated the development of powerful models for
handwriting recognition for various sources of interest in historical research. The transition
from experimental to production phase has been achieved in the past five years, thanks to the
widespread use of general-purpose HTR toolkits and turn-key annotation interfaces. Many in-
stitutions now consider automatic acquisition of text as a crucial step for studying and dissem-
inating their digitized collections in a structured format. This allows for unrestricted querying,
indexing, and sharing operations. As a result, there is an increasing demand for ground-truth
data aligned with specific needs, as well as robust pre-trained models that can be adapted to
unique requirements.

In an effort to address this pressing need, this paper presents three HTR models that can ef-
ficiently transcribe a wide range of manuscripts including charters collections, registers, and
serial documents. These types of manuscripts are often the most abundant yet understudied
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sources. The proposed general-purpose models are specifically made to be reused, and ready
to be deployed and fine-tuned for specific uses. They focus on two script families : Textualis,
used in manuscripts between the late-11th and 13th centuries, and Cursiva, which emerged in
the mid-13th century and persisted into the Modern Age. The ground-truth data for training the
models is sourced from collections that encompass two of the most significant written sources
for studying the Middle Ages: cartularies, which are copies of deeds related to the transfer of
rights (sales, donations, exchanges, etc.); and registers, i.e. serial documents pertaining to the
internal management and public activities of an institution.

This paper is organized into three distinct sections. The first section presents the training corpus
and outlines the architecture used for modeling historical writing. The second section con-
ducts a comprehensive analysis of the obtained results, including an in-depth examination of
the most prevalent errors. Lastly, the paper discusses the implications and challenges raised by
the application of HTR in the field of medieval paleography and diplomatics.

II RELATED WORKS
The field of HTR techniques applied to manuscripts has undergone significant transformation
over the past decade, transitioning from Markov engine-based models (Bunke et al. [1995]) to
deep-learning approaches using neural networks at character level (Graves and Schmidhuber
[2008]). Recent advancements such as the introduction of CTC mechanisms and bidirectional
networks (Graves et al. [2008]) have considerably enhanced accuracy and reduced the depen-
dency on ground-truth data for the development of generalist training engines ((Leifert et al.
[2016]), Puigcerver and Mocholı́ [2018], de Sousa Neto et al. [2020]). In the realm of medieval
manuscripts, pioneering efforts have been made by projects such as Himanis (Stutzmann et al.
[2017]) and Home (Stutzmann et al. [2021]), supported by Transkribus (Kahle et al. [2017]), in
creating extensive aligned and documented corpora for effective HTR and NLP model training
on medieval sources. Similarly, the Scripta-PSL and Cremma projects (Chagué [2021]), sup-
ported by Kraken (Kiessling [2019]) and the eScriptorium (Kiessling et al. [2019]) platform,
have introduced widely adopted scientific practices and annotation guidelines (Pinche [2022])
for model production applied to medieval Latin and Hebrew manuscripts.

Moreover, in recent years, the application of HTR techniques to historical manuscripts has in-
creasingly intersected with paleography and diplomatics. This symbiotic relationship is natural,
as generating ground-truth data for modeling ancient scripts is not only resource-intensive and
time-consuming, but also requires specialized expertise in reading and deciphering ancient lan-
guages and scripts. It also requires proposing intellectual methodologies to clarify ambiguities
and define annotation guidelines. Paleographers and historians have actively contributed to the
creation and selection of reliable ground-truth data, as well as the analysis of common errors of
prediction results, providing valuable feedback for improving models.

In contrast to OCR, which typically deals with a limited set of typographic variations, HTR
requires the development of specialized models, facing a higher degree of variability: chrono-
logical aspect of the texts, typology of the documents, script families, regional practices, even
customs and personal writing practices of the people who produced it: scribes, court scribes and
notaries. Those issues have sparked discussions that go beyond simple accuracy-based results,
delving into the nature of the ground truth data itself. Questions arise on the necessity to account
for abbreviations (Camps et al. [2021]), on the transcription conventions –graphemic or diplo-
matic, i.e. imitative, as proposed by Driscoll (Driscoll [2006]), and on the representativeness of
a training corpus while mitigating potential biases (Schoen and Saretto [2022]).
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Writing, as a normative system, can be effectively modeled using modern HTR techniques.
Recent studies have demonstrated that HTR applied to medieval manuscripts can achieve im-
pressive prediction rates, with less than 5% Character Error Rate (CER). However, it is worth
noting that this rate may significantly decrease when models are confronted with documents
outside their domain or belonging to a different script family. This is particularly challeng-
ing in the case of ancient scripts, where readers must restore missing information encoded in
abbreviations, formulae, and implicit knowledge that cannot be fully modeled using current
state-of-the-art techniques.

In previous years, modeling proposals for handwriting recognition were often focused on indi-
vidual hand-level and author-centered approaches. However, given the substantial variation in
writing styles and hands across the medieval period and the scarcity of domain-specific ground
truth, a more comprehensive approach to handwriting classification is necessary. With sufficient
training data the merging of distinct hands into a single family-script model is achievable (Hodel
et al. [2021]). In our case, we adopt the classification based on Latin script families, as proposed
by the CLAMM corpus, which encompasses 12 book-script families spanning the period from
the 9th to the 15th centuries (Kestemont et al. [2017]). Our proposed models specifically focus
on the two most numerous script families, namely Cursiva (mid-13th to late 16th centuries) and
Textualis (late 11th to mid-13th centuries), for which sufficient ground truth data is available. It
is important to note that this division is purely consensual, as the number of script families and
sub-families increases significantly towards the end of the 14th century.

III CORPORA DESCRIPTION

3.1 The e-NDP corpus
The corpus of the registers of Notre-Dame-de-Paris is one of the few available corpora dealing
with the HTR of documentary manuscripts from the late medieval period (Claustre and Smith
[2022]). These registers, consisting of minutes of decisions made during the weekly meetings
held by the canons, pertain to the management of the institution and its assets. A key objective
of the e-NDP project was to obtain the text from over 14,000 pages constituting the entirety
of the records from the medieval period, housed in the Archives nationales (LL105 to LL128).
Subsequently, the inferred text has been structured and transformed into a research engine capa-
ble of indexing and facilitating quick access to valuable information for studying one of the most
significant urban institutions of medieval France. For this purpose, a total of 500 pages from
26 registers, dating from 1326 to 1504, were transcribed by historians and paleographers using
eScriptorium. These transcriptions were then used to train HTR models specifically adapted to
produce high-quality transcriptions of all the digitized pages.

The registers in question are characterized by their usage of a family of cursive scripts, predom-
inantly in Latin, with occasional pages and formulations in medieval French. Their page layout,
typical of documentary manuscripts, evolves with time, with patterns such as lists of names,
margin notes, titles, and other peritextual additions. These manuscripts were often produced
for the purpose of daily consultation and administration, rather than the intention of long-term
preservation, resulting in a less meticulous design compared to literary manuscripts.

3.2 The HOME-Alcar corpus
The HOME-Alcar corpus (Stutzmann et al. [2021]) was created as a component of the European
research initiative ”HOME History of Medieval Europe.” This project was coordinated by the
Institut de Recherche et d’Histoire des Textes (IRHT-CNRS). The corpus offers a collection
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Table 1 List of training and testing manuscripts.
Set Manuscript code name script type nº lines nº tokens

train Cartulary of the Notre-Dame de la Roche abbey Roche Cursiva antiquior 2103 19164
train Cartulary of Saint-Denis abbey S Denis Textualis 18363 132854
train Cartulary of Charles II of Navarre Navarre Cursiva 6777 94262
train Cartulary of Notre-Dame de Vauluisant abbey Vauluisant Textualis 12642 69364
train Cartulary of Notre-Dame de Fervaques abbey Fervaques Textualis 4661 45251
train Cartulary of Saint Nicaise of Reims S Nicaise Textualis 7404 99526
train Cartulary of Notre-Dame de Clairmarais Clairmarais Semi-hybrida & Cursiva 8554 77478
train Formulary of Odart of Morchesne Morchesne Cursiva 10515 110033
train Registers of the chapter of Notre-Dame de Paris e-NDP Cursiva 33735 202348
test Cartulary of Nesle seigneury Nesle Cursiva & Textualis 3562 37756
test Cartulary of the Pontigny abbey Pontigny Textualis & Cursiva antiquior 10717 78045
test Cartulary of the Cathedral of Notre-Dame de Chartes Chartres Textualis 1636 14564
test Register of the French Royal Chancery Himanis Cursiva 485 8441

Total Train 104754 850280
Total Test 16400 138806

Train + Test 121154 989086

of images of medieval manuscripts that are aligned with their scholarly editions at the line
level, along with comprehensive annotations of named entities such as persons and places. This
corpus serves as a valuable resource for training HTR and Named Entity Recognition (NER)
models synchronously.

The corpus contains 17 French cartularies, which are volumes containing medieval copies of
original documents, dating from the 12th to the 14th centuries. These cartularies belong to
at least 4 distinct script families: Textualis, Cursiva, Cursiva Antiquior, and Semi-Hybrida.
Cartularies were commonly produced in ecclesiastical institutions since the 11th century, and in
civil institutions from the 13th century onwards. These volumes are highly valuable in medieval
studies as they contain documents that were often not preserved in their original form, such as
property transfers, wills, land and debt disputes, as well as rarer documents such as treaties,
indemnities, or successions. All of these documents are included in the HOME-Alcar corpus.
In summary, this corpus comprises 3090 acts, with 2760 written in Latin and 330 in Old and
Middle French, totaling almost 1 million tokens.

3.3 The Himanis project
The Himanis project, in collaboration with the READ consortium (Recognition and Enrichment
of Archival Documents), has developed the most advanced model to date for late medieval script
recognition, known as Himanis Chancery M1+. This model is based on the partial edition of
the registers produced by the French Royal Chancery between 1302 and 1483, specifically the
Archives nationales, JJ35 to JJ211. These registers, also referred to as cartulary-registers, con-
tain copies of various types of charters, including letters of remission, mandates, amortizations,
ennoblements, and property confirmations.

The Himanis model was developed by aligning the digitized images line by line with the partial
semi-diplomatic edition of Paul Guerin (Guérin [1881]), and then encoding the data using the
HTR+ engine in Transkribus (Leifert et al. [2016]). This model achieved a validation Character
Error Rate (CER) of 0.08. Using this model, over 70,000 pages were transcribed, and a querying
tool with indexing and word-spotting functionality was built to facilitate access to the entire
French Royal Chancery corpus. In 2021, the training dataset for the Himanis model, known as
HIMANIS-Guérin, was made freely available on Zenodo. This dataset includes 1,500 images
and 30,000 text lines of ground-truth data, which were primarily written in Latin and Old French
using a Cursiva script.
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3.4 Datasets configuration
During the training phase, the manuscripts were distributed into two groups (see Table 1) ac-
cording to the predominant type of writing:

• Cursiva (G1) contains 5 elements: The e-NDP registers; and the cartularies of Navarre,
Clairmarais, Notre dame de la Roche and the formulary of Odart de Morchesne for a total
of 61684 lines.

• Textualis (G2) contains 4 elements: The cartularies of Saint Denis, Fervaques, Saint
Nicaise and Valuisant for a total of 43070 lines.

Figure 1 Five examples of act protocols from Himanis (a), Chartres (b), e-NDP (c), Nesle (d) and
Pontigny (e). In both Latin and French, all five follow a similar act opening containing an intitulatio, a
general address (”to all who will read this letter”) and a salutation.

Four manuscripts that were not used during the training phase were set aside for the purpose
of testing. These manuscripts include: (1) the Nesle cartulary, which predominantly features
Cursive script but also contains some pages in Textualis script; (2) the Chartres cartulary, which
is entirely written in Textualis script; (3) the Pontigny cartulary, which exhibits alternating
sections in Cursiva Antiquior and Textualis script; and finally, (4) a random set of 30 pages
from Himanis, selected from various volumes of registers and written in Cursiva script.

Both the training and test corpora are bilingual, with an overall ratio of 4:1 (Latin/French) for
the training set and 5:2 for the testing set. Furthermore, as corpora come from diplomatic
editions, the transcriptions can be defined as semi-diplomatic, that means all abbreviations have
been expanded, punctuation standardized, named entities capitalized and all variants of a given
letter (allographs) reduced to the canonical letter without distinctions between them.

Additionally, the commas in the ground truth were adjusted in all documents to conform with
their usage in the original manuscript. In instances where modern editors introduced a comma
(or semicolon) to indicate a pause in the sentence, even though such punctuation marks were
not present in the manuscript, the comma was removed. In other cases, commas were replaced
with periods (”.”) as it is often the period that serves the three functions (soft, middle, and final
pauses) of separating sentences or clauses in most manuscripts.
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The complete set of 110 characters used in training transcription is listed below:
• lowercase letters : abcdefghijklmnopqrstuvwxyz
• capital letters : ABCDEFGHIJKLMNOPQRSTUVWXYZ
• numbers : 0123456789
• punctuation marks : .,;:!?’-| blank
• diacritical marks : ÇÉÏÜàâæçèéëȩı̈üÿōœñ
• other glyph : #%$*+-§“”°[](){}/ ><

IV HTR ARCHITECTURE
The HTR architecture employed in this study can be characterized as a classical Convolutional
Recurrent Neural Network (CRNN) pattern recognition approach, consisting of 5.9 million
trainable parameters. The architecture, which seems to achieve a slightly smaller loss on our
documents compared to Kraken’s setup default (See Figure 2), operates in three steps: (i) gray-
scale images are inputted into four Convolutional Neural Network (CNN) layers for feature
extraction and encoding; (ii) the features are then propagated through three Recurrent Neu-
ral Network (RNN) layers in a bidirectional manner to capture contextual information; and
finally (iii) a Connectionist Temporal Classification (CTC) algorithm is employed to compute
the model’s loss value and render the inferred text as a UTF-8 string.

(i) The convolutional block consists of layers with varying kernel sizes (4x16, 3x8) and 16n
filters per layer (32, 32, 64, 64). Following each convolutional layer, the neurons pass through a
MaxPooling layer with a 2x2 kernel. Additionally, a 2D dropout with a probability of 0.1 is ap-
plied to each layer, and Rectified Linear Units (ReLU) are used as the activation function. Prior
to applying the recurrent block, a reshape layer is used to collapse the non-1 height dimensions
into a single value, with the height of the images fixed at 128 pixels, allowing for variable width
to accommodate varying sizes of manuscript lines more effectively.

After the reshape layer, the recurrent block is activated (ii). It consists of three BiLSTM net-
works, each using a 1D dropout with a probability of 0.3. The number of hidden units in all the
LSTMs is set to 256. Subsequently, (iii) the output passes through a dense layer with softmax
activation, with a size equal to the charset size + 1 (CTC blank symbol). A 1D dropout with a
probability of 0.3 is also applied before this last layer.

In Kraken, which uses the VGSL network specification, this training architecture can be fully
replicated by using : -s ’[1,128,0,1 Cr4,16,32 Do0.1,2 Mp2,2 Cr4,16,32 Do0.1,2

Mp2,2 Cr3,8,64 Do0.1,2 Mp2,2 Cr3,8,64 Do0.1,2 S1(1x0)1,3 Lbx256 Do0.3,2

Lbx256 Do0.3,2 Lbx256 Do0.3]’

4.1 Hyperparameters
During the training process, we use a batch size of {4}; a learning rate of {2.5 × 10−4} as
indicated by the LR finder (See figure 2); and a pad size of {24} pixels. The pad size is useful
in providing more space to the kernel for better coverage of the image. Additionally, we ran
a {ReduceOnPlateau} optimizer with patience {3}. Data augmentation techniques, such as
distortion, blur, and rotation, were also applied to the images to enhance training performance.

All the training cycles were realized using a Tesla V100 SXM2 (32GB) coupled to a 128GB of
RAM for about 5-35 hours depending of the size of the corpus and the task.
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Figure 2 The OneCycle scheduler was applied to both our architecture and Kraken’s v4 default setup.
The Adam learning rate was cycled between {5×10−5 : 1×10−3} values for 5 epochs. Results indicate
that a starting learning rate between {1.5 × 10−4 : 3 × 10−4} is optimal for a batch size of {4} which
confirms a LR value as the sqrt(batch-size)×10−4 . Data was smoothed using the Savitzky-Golay filter.

V EXPERIMENTS
We formulated our experiments with three primary objectives in mind: (i) Developing generic
models for each script family; (ii) Exploring the correlation between performance accuracy and
the quantity and diversity of ground truth data; and (iii) Assessing the advantages and limitations
of creating a composite model by combining resources from both script families. To achieve
these goals, we conducted four distinct experiments :

1. A step-wise training using batches of documents for each script family. (Tables 2 and 3)
2. A cross-script and cross-lingual training on quartiles (Q1 is composed of 400 pages : 200

random pages from each script family; Q2 contains 400 of each one, etc.) using the entire
ground-truth (G1 + G2)

3. A fine-tuning exercise (retraining on initialized weights) for the models developed in
points 1 and 2.

4. A testing exercise was conducted on four multilingual and mixed-families manuscripts
that were not included in the training dataset. The purpose of this exercise was to assess
the models’ generalization ability and sensitivity to retraining.

The performance of each model will be evaluated using widely recognized metrics, including
accuracy (calculated as errors per characters), CER (Character Error Ratio), and WER (Word
Error Ratio), without applying normalization to the results. Additionally, for the fine-tuning
exercises, we used 10 reserved pages from each manuscript.

VI RESULTS
The results presented in Tables 2 and 3 reveal that the proto-Gothic and early Gothic scripts
(Textualis) achieve a convergence to an accuracy over 0.9, much faster compared to the Late-
Gothic scripts (Cursiva), which generally require a significantly higher number of pages to
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reach the same level of accuracy. However, fine-tuning on the Textualis manuscripts (Chartres)
only yields a modest improvement of +1.2% compared to the generalist model. In contrast,
the Cursiva manuscripts (Nesle and Himanis) are more responsive to fine-tuning, resulting in
substantial accuracy improvements of +6% (Table 2) and +8% in three of the test experiments
(as shown in Table 4). The fitting on Pontigny, which combines Textualis and Cursiva antiquior,
naturally falls in the middle with a +4.5% improvement (Table 4).

Table 2 Evaluation results for G1 models. val acc: validation accuracy during training. test acc: testing
accuracy on the cartulary of Nesle

model name Content pages val acc test acc CER WER
G1 test 1 Clairmarais, Roche 121 + 66 0.935 0.696 0.296 0.629
G1 test 2 Clairmarais, Roche, +Navarre 187 + 208 0.939 0.798 0.192 0.518
G1 test 3 Clairmarais, Roche, Navarre, +Morchesne 395 + 176 0.941 0.797 0.194 0.514
G1 test 4 Clairmarais, Roche, Navarre, Morchesne, +e-NDP/5 571 + 100 0.939 0.807 0.183 0.501
G1 test 5 Clairmarais, Roche, Navarre, Morchesne, +e-NDP full 671 + 400 0.936 0.840 0.156 0.448

G1 FineTuning +10 pages Nesle 1071 + 10 0.942 0.901 0.095 0.277

Table 3 Evaluation results for G2 models. test acc: testing accuracy on the cartulary of Chartres.
model name Content pages val acc test acc CER WER

G2 test 1 S Denis, Fervaques 199 + 90 0.929 0.885 0.097 0.278
G2 test 2 S Denis, Fervaques, +S Nicaise 289 + 109 0.932 0.906 0.078 0.225
G2 test 3 S Denis, Fervaques, S Nicaise, +Vauluisant 398 + 106 0.935 0.914 0.071 0.213

G2 FineTuning +10 pages Chartres 504 + 10 0.938 0.926 0.060 0.163

Table 4 Evaluation results for cross-scripts models by quartile. Each quartile (Qn) contains 25% of the
entire training corpus (G1 + G2 : 1575 pages). The Fine-tuning experiments (Qn FT) were performed
using 10 reserved pages from each manuscript. For Nesle and Chartres, these pages and the test-set
remain the same as the previous experiments.

Nesle (G1) Chartres (G2) Pontigny (G1 + G2) Himanis (G1)Manuscript /
metric test acc CER WER test acc CER WER test acc CER WER test acc CER WER

Q1 (25%) 0.841 0.153 0.430 0.911 0.073 0.209 0.821 0.166 0.454 0.789 0.222 0.580
Q1 FT 0.890 0.106 0.292 0.917 0.068 0.183 0.879 0.110 0.301 0.863 0.136 0.416
Q2 (50%) 0.862 0.133 0.386 0.919 0.065 0.179 0.843 0.146 0.397 0.803 0.202 0.544
Q2 FT 0.904 0.090 0.256 0.926 0.060 0.163 0.888 0.101 0.275 0.884 0.115 0.361
Q3 (100%) 0.868 0.127 0.363 0.923 0.062 0.170 0.848 0.142 0.373 0.832 0.171 0.468
Q3 FT 0.910 0.084 0.234 0.928 0.057 0.158 0.892 0.097 0.264 0.893 0.104 0.324

HTR modelizations are often conducted on entire corpora of manuscripts. However, as evident
from the cross-family models in Table 4, using smaller batches with a diverse range of origins
can give satisfactory results. The cross-family models, trained with 200 pages from each script
(Q1, 25%) from 9 manuscripts, are able to identify dominant trends more quickly and achieve
comparable performance to the Textualis (0.914 vs 0.917) and Cursiva (0.840 vs 0.841) models
(Tables 2 and 3) that have more than twice the amount of ground truth data. However, the im-
provements become more costly beyond the inflection point of around 85% accuracy in Cursiva
and 90% in Textualis, where the increase in quantity of ground truth introduces only discrete
gains and leads to a plateau in the accuracy model. This is evident from the Q2 and Q3 mod-
els (Table 4), where the improvement of 1 to 2 points in accuracy on the four test manuscripts
required incorporating over a thousand new pages of ground truth data.

The tests conducted to assess the impact of a multilingual and multiscript corpus revealed that
cross-training does not result in any loss of accuracy. On the contrary, it leads to a slight
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improvement in Chartres (0.914 vs 0.923) and a significant improvement in Nesle (0.840 vs
0.868), which is predominantly written in Cursiva with some pages in Textualis. Despite the
existence of a bilingual record, as seen in Nesle, Himanis, and Pontigny, the quality of inference
does not seem to be dramatically reduced, although it could be a potential source of errors due
to the differences in the Latin abbreviation systems used in French and Latin. Using such
multilingual and multifamily models is not only an effective way to reduce bias and increase
variance, but also aligns with the characteristics of medieval documentary textuality. On one
hand, medieval documentary compilations often contain documents written in diverse hands
and script families, sometimes within the same page. On the other hand, handwriting during
that period was evolutionary and transitional, with scripts like Cursiva antiquior being widely
practiced. The ability of HTR models to handle multilingual sources is crucial for late-medieval
documents, as acts in vernacular and Latin coexist within the same manuscript or collection, and
Latin formulations in legal value documents are commonly used in the late-medieval period
(Glessgen [2004]).

Table 5 The ten characters accumulating the most errors (substitutions + deletions + insertions) accord-
ing to the hypotheses of the Q3 and Q3 FT models on the test datasets. The updating of the models on
new data allows for significant improvements in the reading of the most problematic characters. +diff(%):
Precision improvement after FT for each character. impr acc: Total percentage of precision improvement
after FT on the ten characters.

model /
char

Nesle (205064 chars) Chartres (97129 chars) Himanis (52110 chars) Pontigny (464660 chars)
Q3 Q3 FT +diff (%) Q3 Q3 FT +diff (%) Q3 Q3 FT +diff (%) Q3 Q3 FT +diff (%)

space 2706 2057 24 1066 1022 4 536 347 35 5721 4822 16
s 2383 863 64 435 392 10 707 335 53 5987 3876 35
i 2211 1734 35 675 613 9 958 598 38 7870 5303 33
e 2307 1492 22 643 598 7 1098 546 50 6370 4891 23
n 2045 1143 44 379 346 9 731 434 41 5365 3457 36
r 1775 1190 33 301 308 -2 823 401 51 4461 2925 34
u 1426 930 35 392 369 6 620 455 27 4473 2911 35
t 1390 795 43 359 327 9 605 326 46 2852 2036 29
a 1087 784 28 328 300 9 587 248 58 3981 2232 44
m 979 738 25 294 265 10 449 252 44 3949 2945 25
c 866 684 21 424 321 24 437 279 36 2614 1448 45

Total 19175 12410 35 5296 4861 8 7551 4221 44 53643 36846 31
impr acc 205064 / 6765 +3.30 97129 / 435 +0.45 52110 / 4221 +6.39 464660 / 16797 +3.61

According to existing literature on the topic of dirty OCR, it has been demonstrated that a min-
imum threshold of 80% Character Error Rate (CER) is required for the effective utilization of
natural language processing tools (Eder [2013]). Conversely, human legibility, and an optimal
level of recall during text indexing (Evershed and Fitch [2014]) are not ensured unless a range
between 85%-90% transcription precision is reached (Mühlberger et al. [2014]). From here, the
time investment required for text collation and text post-processing stages remains significant
(Springmann et al. [2016]). In modern OCR engines, a 90% CER result is deemed subpar.
However, in HTR, characterized by its intricate nature and insufficient data availability, this
same outcome provides a preliminary basis for accelerating the development of tailored train-
ing resources. Generic models, such as ours, are not intended for direct application. Instead,
their purpose lies in addressing data scarcity challenges by serving as a foundational model for
analogous HTR tasks. Results indicate that a first fine-tuning exercise on generic transcriptions
using only a few pages can quickly improve CER by a range of 2% to 7%, which in terms of
WER (Word Error Ratio) can equate up to 20% fewer erroneous words.

Regarding the analysis of errors, a consistent pattern is observed in all cases, as shown in Table
5. The most common errors are related to insertions of a limited set of characters, including i,
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e, s, r, n, m, t, u, a, and white-space. Upon closer examination, these errors often coincide with
misrecognition of typical phenomena in medieval handwriting. These include indistinctness in
characters composed of successive minims (single strokes), such as n, m, i, u (e.g., indiuidue,
mandauimus); misrecognized ligatures, such as st and ct; undeveloped or incompletely de-
veloped abbreviations by suspension, which are easy to fit (e.g., no[-bis], franc[-orum]); by
contraction, which are harder to fit (e.g., m[a]g[is]t[er], d[o]m[i]n[us]); abbreviations whose
expansion depends on the declension, (v.g. ‘Par.’ which can be resolved as Par[is], Par[isiensis]
or Par[isiense] depending on the context); final form variants, such as s ronds and longs (s) or al-
lographs: v.g. single and two-compartment a; diacritical marks, such as é and à; and unresolved
diphthongs, such as ae and oe.

Figure 3 Transcribed line in Himanis (AN, JJ073, 44v, l.22). GT: ground-truth; Q3: prediction of the
Q3 model; FT: Prediction of the Q3 fine-tuned model.

Figure 4 Transcribed line in cartulary of Nesle (f. 106r, l.16).

Figure 5 Transcribed line in cartulary of Navarre using normalized (GT) and abbreviated (PL) tran-
scription modes (f. 86v, l.18).

The case of white-space errors is special because it encompasses several phenomena. One
is editorial, as modern editions, from which most transcriptions are derived, often introduce
punctuation marks and spaces that may not be reflected in the original manuscript. Others are
intrinsic to late-medieval writing itself, such as ligatures (letters sharing the same stroke) or
fake ligatures, and long end strokes, especially after prepositions or articles (as seen in Figure
3 and Q3 transcription), which hinder the automatic isolation of words. Additionally, the use
of scripta continua (more common in manuscripts prior to the 12th century) or the dissimilar
practice of blank space and period by scribes to separate words and blocks of sentences in
documentary manuscripts adds to the complexity of white-space errors.

It is essential to investigate the specific characteristics acquired by the model through the fine-
tuning process. It is evident that certain optimizations stem from the simultaneous incorpora-
tion of new data points. The refined model facilitates a more accurate comprehension of the
fluent handwriting style and the abbreviation practices employed by scribes. Consequently, it
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enhances word segmentation, thereby reducing errors related to whitespace, and improves the
treatment of abbreviations, thereby mitigating errors in word endings and within words them-
selves. This effectively prevents literal transcription errors, such as the instance of Guille instead
of Guillaume. This is exemplified in the cases of Himanis and Pontigny, where the model pro-
gresses synchronously in learning the nuances of i, e, m, u, r, b and the blank (see Figure 3). In
some other instances, the model may also learn specific style features of individual scribes. As
an example, consider Nesle (refer to Figure 4), where a particular scribe employs an unconven-
tional letter ”s” that bears a striking resemblance to the ”l” utilized in the authentic manuscripts.
Initially, the Q3 model transcribes it as an ”l,” but through the process of fine-tuning, this in-
consistency is rectified. This straightforward modification yields a noteworthy enhancement
in the overall accuracy, with an approximate increase of nearly 1%. Notably, this adjustment
addresses two of the most frequently employed characters in the manuscript.

It’s evident that a significant number of errors are inherent in a model trained on semi-diplomatic
transcriptions. The model will probabilistically replicate normalization practices and diplomatic
conventions, producing clearer and legible texts but introducing a deliberate disparity between
the graphical representation and textual content of each manuscript line (refer to Figure 5).
The standardization process carried out by editors involves using a restricted set of charac-
ters, expanding abbreviations (which often rely on inflection), replacing glyphs and normaliz-
ing spacing, punctuation, and ligatures whose use varies widely from one tradition to another.
This series of choices made by the editors to modernize the texts actually constitutes a set of
manuscript reading levels that lies between interpretation and adherence to common but not
always rigid text restoration principles. Nevertheless, even though multiple reading levels are
possible, due to its probabilistic nature, the model cannot accommodate multiple interpretations
of the same graphical series and will try to infer unique replacement and replication rules. As
a result, its automatic transcriptions, based on interpreted human text editions, will inevitably
carry a noticeable ratio of false negatives, especially when dealing with heavily ligatured or
abbreviated late-medieval and pre-modern scripts where the number of potential readings and
expansions increases.

VII DISCUSSION
There are several explanations for these results from the perspectives of paleography and me-
dieval diplomatics. Firstly, the Textualis model has been exclusively trained on cartularies
that closely adhere to the bookhand script. Monks who wrote books and copied cartularies
were meticulous in their letters layout and avoided embellishments to ensure readability. While
there may be occasional ornamentations or stylistic preferences introduced by professional pen-
writers, the scribal scripts and their abbreviative systems during the 12th century were largely
consistent across different locations (Hasenohr [1998]).

In this context where individual variability is constrained by the script type, the unseen test
data align closely with the training data, resulting in models with high generalization capacity
but still bearing a notable level of bias. This could explain why updating weights on a robust
generalist Textualis model only leads to modest improvements in handwriting recognition. It
can be presumed that this model would perform well on book manuscripts, but may not be as
effective on original charter collections that exhibit a more diverse graphical apparatus.

The process of gotization in writing, which emerged during the 13th century and continued
thereafter, brought about significant changes in terms of extreme angularity, pen tools, and

Journal of Data Mining and Digital Humanities
ISSN 2416-5999, an open-access journal

11 http://jdmdh.episciences.org

http://jdmdh.episciences.org


writing speed. Subsequently, the introduction of the Cursive variant, characterized by contin-
uous writing without lifting the pen between characters, resulted in more profound alterations,
including a shift in the axis of writing from vertical to horizontal, simplification of the ductus,
and considerable development of ligatures (Poulle [1966], Guyotjeannin et al. [1993]). The cur-
sive style rendered the shape and size of letters more reliant on the individual hand of the scribe,
thereby introducing a greater degree of variability. Additionally, with the proliferation of non-
monastic orders and the emergence of new written instruments, such as multilingual accounts,
fiefs, and registers, open documents with varying handwriting styles and page setups became
more prevalent among the laity. Consequently, handwriting recognition (HTR) work on Cursiva
necessitates the consideration of a much wider diversity of written records, hands, languages,
and documentary typologies, resulting in an increased number and complexity of features and
trends that need to be learned by the model. Models trained on such data may encounter under-
fitting issues, underscoring the importance of collecting and providing new specific information
through fine-tuning to mitigate these challenges.

VIII CONCLUSION
In this article, we have presented specialized models for handwriting recognition that are tai-
lored for documentary and serial manuscripts dating from the 12th to the 15th centuries. Our
robustness experiments have demonstrated that a single model trained on semi-diplomatic tran-
scriptions is capable of achieving high accuracy (≥85 points without fine-tuning, ≥90 with
fine-tuning) in recognizing multiple handwriting script families and effectively handling di-
verse linguistic and documentary registers. Moreover, our training experiments have revealed
that even small batches of ground-truth data from varied sources yield results comparable to
those obtained from training on large uniform corpora. Furthermore, our findings indicate that
fine-tuning of the models gives positive outcomes when dealing with manuscripts that exhibit a
high number of variations deviating from the regularity of the script, which is more commonly
observed in late-Gothic scripts or late-medieval documentary manuscripts.

IX MODEL REPOSITORIES
The Zenodo repositories containing training logs and models for this work available at:

https://doi.org/10.5281/zenodo.7547438

https://doi.org/10.5281/zenodo.7401833
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Geneviève Hasenohr. Abréviations et frontières de mots. Langue française, pages 24–29, 1998.
Tobias Mathias Hodel, David Selim Schoch, Christa Schneider, and Jake Purcell. General models for handwritten

text recognition: Feasibility and state-of-the art. german kurrent as an example. Journal of open humanities
data, 7(13):1–10, 2021.

Philip Kahle, Sebastian Colutto, Günter Hackl, and Günter Mühlberger. Transkribus - a service platform for
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Günter Mühlberger, Johannes Zelger, and David Sagmeister. User-driven correction of ocr errors: combining
crowdsourcing and information retrieval technology. In Proceedings of the First International Conference on
Digital Access to Textual Cultural Heritage, pages 53–56, 2014.

Ariane Pinche. Guide de transcription pour les manuscrits du xe au xve siècle. 2022. URL https://hal.
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Dominique Stutzmann, Jean-François Moufflet, and Sébastien Hamel. La recherche en plein texte dans les sources
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