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Abstract

In this study, we address the interesting task of classifying historical texts by their assumed period of writ-
ing. This task is useful in digital humanity studies where many texts have unidentified publication dates.
For years, the typical approach for temporal text classification was supervised using machine-learning
algorithms. These algorithms require careful feature engineering and considerable domain expertise to
design a feature extractor to transform the raw text into a feature vector from which the classifier could
learn to classify any unseen valid input. Recently, deep learning has produced extremely promising re-
sults for various tasks in natural language processing (NLP). The primary advantage of deep learning is
that human engineers did not design the feature layers, but the features were extrapolated from data with
a general-purpose learning procedure. We investigated deep learning models for period classification of
historical texts. We compared three common models: paragraph vectors, convolutional neural networks
(CNN) and recurrent neural networks (RNN), and conventional machine-learning methods. We demon-
strate that the CNN and RNN models outperformed the paragraph vector model and the conventional
supervised machine-learning algorithms. In addition, we constructed word embeddings for each time
period and analyzed semantic changes of word meanings over time.
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I INTRODUCTION

The aim of preserving and rendering cultural heritage more accessible motivates the digitization
of historical texts in the last decade. Owing to the increasing availability of historical texts
in digital form, the application of natural language processing (NLP) methods and tools to
historical texts have garnered particular interest. Particular linguistic properties of historical
texts, including nonstandard grammar, orthography, and abbreviations often pose challenges
for NLP. Another challenge is predicting the period when a text was originally written. We
herein address the interesting task of classifying historical texts according to their predicted
period of writing. In the digital humanities fields, where many texts contain unidentified or
controversial publication dates, this task is useful.

Moreover, in recent years, considerable research has been devoted to diachronic lexical re-
sources, which comprise terms from different language periods [Borin and Forsberg, 2011,
Liebeskind et al., 2013, Riedl et al., 2014]. These resources are primarily used for studying
language changes and supporting searches in historical domains, thus bridging the lexical gap
between modern and ancient languages. Prior work on diachronic lexical resources addressed
the problem of collecting relevant related terms from a diachronic corpus, given lexical resource
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entries. However, before constructing a diachronic lexical resource, a preliminary task of clas-
sifying the diachronic corpus documents to historical periods should be confronted.

Typically, two learning approaches for temporal text classification were investigated: supervised
and unsupervised. Supervised machine-learning algorithms use the training data of the input
examples with their desired output to study a function. Subsequently, the supervised algorithms
generalize and predict the value of the function for any unseen valid input [Ciobanu et al.,
2013b,a, Stajner and Zampieri, 2013]. In contrast to supervised machine-learning algorithms,
unsupervised machine-learning algorithms do not use labeled examples for training. Instead
using the data characteristics, unsupervised learning algorithms describe how data are organized
or clustered [Liao, 2005, Dalli and Wilks, 2006, Blei and Lafferty, 2006, Wang et al., 2008].

In this paper, we focused on the supervised machine-learning approach. Most conventional
supervised machine-learning algorithms for the period classification of historical texts are ei-
ther rule-based or corpus-based. Their efficiency depends on the prior feature engineering.
Studies have shown that given sufficient data, deep-learning models (i.e., deep layers of neu-
ral networks) can, without task-specific or data-specific feature engineering and with minimal
restrictions, perform classifications on various text genre.

Therefore, we herein investigate deep-learning models for period classification. We compare
three different models: paragraph vectors [Le and Mikolov, 2014] (PVs), convolutional neural
network (CNN) [Kim, 2014], and recurrent neural network (RNN) [Hochreiter and Schmidhu-
ber, 1997]. The PV model uses paragraph vectors as topic space modeling. The CNN model
is a feedforward neural network designed to require minimal preprocessing. Unlike the CNN,
the RNN exhibits dynamic temporal behavior, using their internal memory to process arbitrary
sequences of inputs.

In our case study, the language of the diachronic corpus is Hebrew. Hebrew had not been
used as a spoken language for more than 1,700 years. Different Jewish communities typically
spoke local languages or dialects incorporating Hebrew and Aramaic. In contrast, Hebrew
was used for formal writing. In the late 19'" century and early 20" century with the national
renaissance of the Jewish people [Blau, 1981], Eliezer Ben-Yehuda spearheaded the revival of
Hebrew as a spoken language [Fellman, 1973]. Ben-Yehuda used 8,000 words from the Bible
and 20,000 words from rabbinical commentaries which he codified and integrated into modern
Hebrew. Modern Hebrew uses Biblical Hebrew morphemes, Mishnaic spelling, and Sephardic
pronunciation, as well as Yiddish idioms.

In addition, the special characteristics of our diachronic corpus render the classification task
even more demanding. For example, our corpus of Responsa includes thousands of questions
and detailed rabbinic answers on various daily issues. The diachronic Responsa documents
present various arguments by citing earlier sources, including the Talmud and its commentators,
legal codes, and earlier responses.

In contrast to previous studies that only classified documents as modern or ancient [HaCohen-
Kerner et al., 2008, 2010], we distinguished between four periods: the 11** century until the end
of the 15" century, the 16"* century, the 17" through the 19*" centuries, and the 20" century
until today.

The application of deep-learning methods to the period classification of Responsa documents
revealed interesting results. The CNN and RNN models significantly outperformed the PV and
supervised machine-learning algorithms with an accuracy exceeding 81.5%.

Journal of Data Mining and Digital Humanities 2 http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal


http://jdmdh.episciences.org

This paper is organized as follows: Section I is the Introduction, in Section II, we describe
related work on diachronic tasks and the corpus of our case study, the Responsa corpus. In
Section III, we provide the necessary background on both conventional machine-learning and
deep-learning methods. Subsequently, in Section IV, we compare the results of the three deep-
learning models. We also analyzed the semantic changes of words meanings over time in Sec-
tion V. Finally, in Section VI, we summarize the primary findings and suggests future directions.

I BACKGROUND

This section describes diachronic data and tasks (Section 2.1), followed by a brief introduc-
tion to the applications of diachronic tasks on our case study, historical Hebrew Jewish corpus
(Section 2.2).

2.1 Diachronic data and tasks

In this section, we focused on two complementary tasks; the first was period classification, or
automated dating of documents and the second was identification of word usage changes over
time.

Language models were widely used in modeling of temporal information. In an early study,
de Jong et al. [2005] used unigram language models combined with smoothing techniques and
the log-likelihood ratio measure [Kraaij, 2004] for the automatic dating of Dutch texts (January
1999 to February 2005). Later, the work of de Jong et al. was improved by Kanhabua and
Ngrvag [2008] using three new methods: 1) word interpolation for eras a word does not occur,
2) temporal entropy term weighting, and 3) external search statistics.

An unsupervised temporal language model was suggested by Dalli and Wilks [2006] to date
texts within a time span of nine years. Their language model is based on temporal-word as-
sociations inferred from the time series under the assumption that natural languages feature
changing word distributions over time.

More recent, Kumar et al. [2011] followed the language modeling approach. They constructed
histograms for a test document based on the Kullback-Leibler divergence between the language
model and supervised language models for each era. They demonstrated the effectiveness of
their method for predicting the publication dates of short stories, which contain few explicit
time references.

Topic models were also investigated for automatic dating of documents. Blei and Lafferty
[2006] introduced a discrete dynamic topic model to reveal topic evolution within the time span
of a corpus. The model aimed at exploring language changes over time. Subsequent work by
Wang et al. [2008] replaced the previous discrete model with a continuous time dynamic topic
model.

Until recently, identifying word usage changes over time was challenging due to the lack of
electronically formatted historical texts. Google (Google books and Google Ngrams historical
projects) has significantly changed this reality owing by providing relevant contextual historical
data.

Wijaya and Yeniterzi [2011] conducted an analysis of a Google Books Ngram dataset and found
that events occurring in the same era were reflected by contextual word changes. Similarly, Mi-
halcea and Nastase [2012] showed that significant differences between time periods, on words
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in context from Google books. Their word samples, divided into three epochs: 1800+/-25 years,
1900+/-25, and 2000+/-25

In addition, Popescu and Strapparava [2013, 2014] investigated the significant changes in the
distribution of emotion words and terms. They used the Google N-gram corpus and focused on
a statistical approach to infer transition periods between eras with specific characteristics. They
observed that the language is not uniformly old or new, and language usage trends and fashions,
even for relatively short periods of time (such as 50 years), greatly impact.

Mitra et al. [2015] suggested an unsupervised construct distributional-thesauri-based network
method, within a media (Google books data), for data from different eras, which clusters word-
centric sense clusters for each era. They also used their method to identify word sense dif-
ferences and to identify differences in word sense distribution across different media (Google
books and Twitter data). They evaluated their method performance both manually as well as
through comparison with WordNet.

Google Books Ngrams in languages other than English were also used for temporal text classi-
fication. Garcia-Fernandez et al. [2011] introduced a system that predicts the publication dates
of excerpts from French journalistic texts. Their system is based on a combination of differ-
ent systems, relying on both supervised and unsupervised learning and uses several external
resources, e.g., Wikipedia, Google Books Ngrams, and etymological background knowledge
about the French language.

However, there were studies that focused in languages other than English and did not use Google
Books. Ciobanu et al. [2013b,a] applied support vector machine (SVM) and random forest
algorithms to classify texts of a historical Romanian text collection. They concluded that the
use of lexical features is the best source of data for this task.

Stajner and Zampieri [2013] investigated stylistic changes in a set of Portuguese historical texts
from the 17" to the early 20" century, and presented a supervised method to classify them by
century. Four stylistic features: average sentence length, average word length, lexical density,
and lexical richness contributed to the classification results of 0.92 F-Measure.

Efremova et al. [2015] extended standard classification techniques by combining different mod-
els trained on particular eras to obtain optimal time identification in a real-world dataset of more
than 100.000 Dutch historical notary acts collected over six centuries. They achieved an overall
accuracy above 90% and macro-average indicators above 63%.

More than one language were investigated by Niculae et al. [2014] who proposed a temporal
modeling ranking approach for historical texts. Their model can be used to produce reasonable
probabilistic estimates of the linguistic era of historical documents in three languages: English,
Portuguese, and Romanian.

Four years ago, Popescu and Strapparava [2015] introduced a SemEval diachronic text evalua-
tion task to identify when the piece of news was written. For this task, a corpus of snippets was
extracted from a large collection of newspapers published between 1700 and 2010. The evalu-
ation was divided into three subtasks. Each subtask pertained to a specific type of information
that might be available in the news. The four systems participating in the tasks have proven that
it is an achievable task with interesting possible future research direction.

Frermann and Lapata [2016] modeled word meanings as a set of senses, which are tracked over
a sequence of contiguous time intervals, by a dynamic Bayesian model. They applied their
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model to the SemEval-2015 temporal classification benchmark datasets and demonstrated that
the model performance is comparable with highly optimized task-specific systems. However
the SemEval-2015 dataset only contains newspapers in English.

Finally, in 2018, Tang [2018] summarized the linguistic-semantic change computation litera-
ture. Tang’s review identifies five components in the field: diachronic corpus, diachronic word
sense characterization, change modeling, evaluation, and data visualization. The review also
recognizes the need for more diachronic corpora for languages other than English.

Contemporary semantic change measures include word embedding which measures semantic
change patterns based on the lexical similarity of identical words over time [Kim et al., 2014,
Kulkarni et al., 2015, Hamilton et al., 2016, Hellrich and Hahn, 2016, Szymanski, 2017]. Words
are embedded into a low-dimensional space. A vector of real numbers represents the context of
each word. The vectors are meaningless on their own, but semantically similar words exhibit
similar vectors. Word embedding is usually done by word2vec models [Mikolov et al., 2013],
which are two-layer neural networks trained to reconstruct word in context from a large corpus.

Typically, two protocols for tracking semantic changes have been used: the continuous training
model [Kim et al., 2014], where the model for each era is initialized with the embeddings of
its predecessor. In contrast, independent training requires mapping between models of different
eras [Kulkarni et al., 2015]. Recently, a comparison between these two protocols was performed
by Hellrich and Hahn [2016].

In this study, we focus on neural language models for the period classification of historical texts.
The experimented models are based on the word2vec word representation, as detailed in Section
3.2.

2.2 The Responsa corpus and diachronic tasks

Our research focuses on the period classification of historical texts from the Responsa project’.
Our Responsa corpus includes questions and detailed rabbinic answers on many daily issues in-
cluding law, health, commerce, marriage, education, and Jewish customs. Responsa documents
include the Jewish juristic negotiation that resulted in the final rabbinic decision. Responsa
documents present various arguments by citing earlier sources, such as the Talmud and its com-
mentators, legal codes, and earlier responses [Koppel, 2011]. Our corpus, used for previous
IR and NLP research [Choueka, 1972, Fraenkel, 1976, Choueka et al., 1987, HaCohen-Kerner
et al., 2008, Koppel, 2011, Zohar et al., 2013, Liebeskind and Dagan, 2015], contains 76,710
articles and approximately 100 million word tokens. Koppel [2011] emphasized another charac-
teristic of Responsa, Responsa corpus was intended as a source of information and not a source
of language use.

Jews are scattered worldwide and the Hebrew language, affected by various local languages,
has evolved over the years. Our corpus represents more than a thousand years of global Jewish
literary creativity. Therefore, the corpus documents are characterized by various genres and
styles. Moreover, the writing style of Hebrew Responsa is enriched by an archaic style. Con-
sequently, the Aramaic citations, primarily from the Talmud, increase the challenge for period
classification.

The Responsa project was used by HaCohen-Kerner et al. [2010] to investigate the classification
of documents by the ethnicity of their authors and/or to the historical period the documents

Thttp://www.biu.ac.il/jh/Responsa
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were written. HaCohen-Kerner et al. applied various machine-learning methods with six sets
of stylistic features: quantitative, orthographic, topographic, lexical, function, and vocabulary
richness. While the accuracy of the logistic regression method for the ethnicity classification
or the period classification was approximately 99.6%, the accuracy of the method for both
classification tasks was approximately 98.3%. HaCohen-Kerner et al. classified the Responsa
documents into two historical periods: the 19" century and the 20" century.

Recently, methods for automatic and semi-automatic diachronic thesaurus construction in rela-
tion to the Responsa corpus were investigated. Thesauri typically contains thousands of entries.
Each entry includes a headword and a list of semantically related terms. A diachronic thesaurus
enables users to search a modern term and obtain related terms from earlier periods. Thus in a
diachronic thesaurus, the headwords are modern and their related terms are ancient.

Zohar et al. [2013] suggested unifying the co-occurrence and distributional similarity approaches
for diachronic thesaurus construction. However, Zohar et al. investigated surface-word level
without considering item morphology. Consequently, there were many inflections for the same
lemma. In the evaluation stage, they classified each related term into lemma based groups.
Later, Liebeskind et al. [2012] proposed a schematic methodology for generating a co-occurrence-
based thesaurus for the Responsa project. They investigated three options for term representa-
tion: surface form, lemma, and multiple lemmas, supplemented with the clustering of term
variants.

Liebeskind et al. [2016], using query expansion techniques, introduced an iterative interactive
scheme for the construction of a diachronic corpus-based thesaurus. They used the ancient-
modern period classification to improve the performance of the statistical co-occurrence mea-
sures, and extended their methods for multiword expressions. Liebeskind et al. also classified
the candidate terms into two historical periods: ancient (from the 11%* century until the 19"
century) and modern (from the 20" century).

Mughaz et al. [2015, 2017] investigated how to determine the time-frame a given Responsa au-
thor lived. Mughaz et al. [2017] defined a set of key phrases and formulated various rules: iron
clad, heuristic, and greedy. Their corpus contains 15,495 files written by 24 rabbis, averaging
643 files for each author. The authorship spanned more than 229 years (1786—2015). The de-
viation for optimal results for birth year and death year of the Responsa authors was 12.8 years
for the authors’ year of birth and 9.2 years for authors’ death.

III  SUPERVISED MACHINE LEARNING FRAMEWORK

Many conventional and deep-learning machine-learning (ML) algorithms have been investi-
gated. Generally, there are three steps in supervised ML algorithms: 1) preparing a training
data set with labeled examples. 2) using the labeled dataset, training a classifier (depending
on the classification model) may involve feature engineering. 3) predicting the classification of
unseen examples.

3.1 Conventional Machine-Learning models

Naive Bayes (NB). NB methods are supervised learning algorithms based on the application
of Bayes’ theorem with the “naive” assumption of conditional independence between each pair
of features considering the class variable value. While the Multinomial NB implements the
NB method for multinomially distributed data, the Multivariate Bernoulli implements the NB
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method for data that is distributed by multivariate Bernoulli distributions, where each of mul-
tiple features is assumed to be a binary-valued variable. NB is a generative classifier that, by
estimating the assumptions and distributions of the model, recreates the model that generated
the data.

Linear models. Linear classifiers are supervised learning algorithms which make classifica-
tion decisions based on the value of a linear combination of the features. Discriminative linear
classifiers learn the classification from observed data statistics. Two popular discriminative lin-
ear classifiers are Logistic Regression (LR) and linear Support Vector Machine (SVM). These
methods, using different loss functions, which measures the discrepancy between the classi-
fier’s prediction and the true output, both solve the same optimization problem. LR assumes
that the observed training set was generated by a binomial model that depends on the output of
the classifier and estimates the maximum likelihood of the vector of weight. Whereas, linear
SVM maximizes the margin between the decision hyperplane and the examples of the training
set.

Multi-layer Perceptron (MLP). MLP is a supervised learning algorithm that learns nonlin-
ear function and classifies linearly non-separable data. MLP has three types of layers: 1) an
input layer which consists of a set of neurons representing the input features. 2) one or more
hidden layers where each neuron transforms the values from the previous layer with a weighted
linear summation, followed by a non-linear activation function, such as the hyperbolic tan func-
tion, the logistic sigmoid function, or the rectified linear unit function. 3) an output layer which
receives the values from the last hidden layer and transforms them into output values. MLP is a
feed-forward neural network model, where the connections between units do not form a cycle.
MLP is trained using the backpropagation algorithm Rumelhart et al. [1986].

3.2 Deep-Learning models

Deep-learning (DL) is a subfield of machine-learning based on learning data representations.
DL models allow machines to both learn and use the features to perform specific tasks. These
models replace the difficult and expensive manual feature engineering processes using domain
knowledge data to create features that allow machine-learning algorithms to function.

DL models have demonstrated excellent performances in many NLP tasks. Therefore, we have
adopted three state-of-the-art DL models for the period classification of historical texts. In
contrast to the conventional MLP deep neural network model trained on bag-of-words vectors,
the three DL models were trained using pre-trained word vectors. We provide the relevant
background on these models (Section 3.2.1). In Section 4.3, we detail the neural networks
architectures we used.

3.2.1 Word Embeddings

Word embedding is the collective name for neural-network-based approaches in which words
are embedded into a low-dimensional space. In word embedding models, the context of each
word is modeled by a d-dimensional vector of real numbers. The vectors are meaningless on
their own, but semantically similar words exhibit similar vectors, and vector similarities are
easy to compute.

Mikolov et al. [2013] presented the most popular word embedding models (word2vec) for com-
puting continuous vector representations of words based on extremely large datasets: continu-
ous bag-of-words model (CBOW) and continuous skip-gram model (skip-gram). The models
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are shallow, two-layer neural networks trained to reconstruct linguistic contexts of words. The
CBOW model predicts the target word (w;) using a context of n words before and after the w;.
The order of context words does not influence the prediction. The skip-gram model is similar to
the CBOW model; however, instead of using the surrounding words to predict the center word,
skip-gram uses the center word to predict the surrounding words.

Inspired by the methods for learning the word vectors, paragraphs were also mapped to vectors
[Le and Mikolov, 2014]. Given the many contexts sampled from the paragraph, the vectors
were “requested” to contribute to the prediction task of the next word.

Two matrices exist in the PV framework: the paragraph matrix with its unique column for every
paragraph, and word vector matrix with a unique column for every word. The PV and word
vectors are averaged or concatenated to predict the next word in a context. After being trained,
the PVs can be used as features to conventional machine-learning techniques including logistic
regression, support vector machines, and K-means.

Techniques to adapt unsupervised word embedding to specific applications, when only small
and noisy labeled datasets are available have recently drawn research attention. Previous studies
have incorporated sentiment information into the neural network to learn sentiment-specific
word embeddings [Tang et al., 2014, Zhang and Lan, 2015]. In the past few years, not many
studies have learned dynamic word embeddings that capture how the meanings of words change
over time [Rudolph and Blei, 2018, Yao et al., 2018]. This interesting research direction of
incorporating the period information into the neural network to learn diachronic-specific word
embeddings will be investigated in future work.

3.2.2 Convolutional Neural Networks

CNNss are deep, feed-forward artificial neural networks successfully applied to analyze visual
imagery. CNN models have recently been shown to be effective for NLP tasks, including part-
of-speech tagging, name entity recognition [Collobert et al., 2011], semantic parsing [Yih et al.,
2014], sentence modeling [Blunsom et al., 2014], and search query retrieval [Shen et al., 2014].

CNNs consist of an input and an output layer, as well as multiple hidden layers. The hidden
layers are either convolutional, pooling, or fully connected. Convolutional layers apply a filter
operation to the input, and pass the result to the next layer. Pooling layers combine the outputs
of neuron clusters in one layer into a single neuron in the next layer. For example, max pooling
uses the maximum value from each of a cluster of neurons at the previous layer. Fully connected
layers connect each neuron in one layer to each neuron in another layer.

Kim [2014] reported a series of experiments with CNNs trained using pre-trained word vectors
for sentence-level classification tasks (Figure 1).

We applied Kim’s static model directly on our period classification of historical texts task.
Their static model is a model with pre-trained vectors from word2vec. All words, including the
unknown ones that are initialized randomly, are maintained static and only the other parameters
of the model are learned. This simple CNN with little hyperparameter tuning and static vectors
yielded excellent results on multiple benchmarks.
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Figure 1: Kim et al. [2014] illustration of their model architecture with two channels for an example
sentence.

3.2.3 Recurrent Neural Networks

RNN is a class of artificial neural network where connections between units form a directed cy-
cle. RNNs are especially useful for processing sequential data such as written natural language.
Recurrent nets differ from feedforward nets because RNNs include a feedback loop, whereby
the output from step n-1 is fed back to the net to affect the outcome of step n, and so forth for
each subsequent step. In Vanilla RNN, this repeating unit exhibits a highly simple structure,
such as a single tanh layer. This layer is the RNN hidden layer that modifies the data en route
from input to output. The Vanilla version simply calculates the tanh activation function based
on the previous hidden state and on the current input. More sophisticated hidden units/layers
are used in the RNN models.

Long short-term memory networks (LSTMs) [Hochreiter and Schmidhuber, 1997] are a special
type of RNN, capable of learning long-term dependencies. LSTM is typically augmented by
recurrent gates called “forget” gates that allow the unit to decide whether to store or delete
information, based on the importance it assigns to the information. The gates are composed of
a sigmoid neural net layer and a point-wise multiplication operation [Graves and Schmidhuber,
2005].

A popular simpler variation of the LSTM, the gated recurrent unit (GRU) [Cho et al., 2014]
model has generated changes in the LSTM unit, including combining the forget and input gates
into a single gate and merging the cell state and hidden state.

Lately, combined models of RNN and CNN have been suggested. Tang et al. [2015] introduced
convolutional-gated recurrent neural network for document-level sentiment classification. Their
model encodes the semantics of sentences and their relations in document representation, and
is end-to-end trained effectively with supervised sentiment classification objectives. Tang et
al. demonstrated that their models could achieve state-of-the-art performances on four datasets.
Lai et al. [2015] also introduced recurrent CNNs to text classification. Their model captures
contextual information with the recurrent structure and constructs the representation of text
using a CNN. Lai et al. demonstrated that their model outperforms the CNN using four different
text classification datasets.

Greff et al. [2017] reported the results of a large-scale study on variants of the LSTM archi-
tecture. However, they concluded that the most typically used LSTM architecture [Graves and
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Period Training set Testset Total

1 29,107 3,234 32,341
2 50,279 5,587 55,866
3 181,898 20,211 202,109
4 282,620 31,402 314,022

Table 1: Period distribution of the paragraphs in our dataset

Schmidhuber, 2005] can perform reasonably well on various datasets. In the current study, we
applied three RNN architectures: the Vanilla, the LSTM, and the GRU, for the period classifi-
cation of historical texts.

IV  EVALUATION

This section presents the evaluation of deep-learning methods for the period classification of
historical texts. We first detail the period distribution in our dataset (Section 4.1). Next, we
describe our evaluation setting (Section 4.2) and the selected neural networks architectures
(Section 4.3) for our experiments. Subsequently, we present the classification results of the
deep-learning methods (Section 4.4).

4.1 Period Classification

The Responsa corpus documents can be divided into four periods: the 11"* century until the
end of the 15 century, the 16! century, the 17"* through the 19" centuries, and the 20"
century until today. In our experiments, we classified the Responsa historical texts into these
four categories.

1th

We divided the history into these four periods since they reflect the historical development
of the halakhic (Jewish religious laws) ruling. The first Period (11*"-16'") is characterized
by the creation of the halakhic codex. The period preceding the publication of the Shulchan
Aruch (i.e. Code of Jewish Law), edited by Rabbi Yosef Caro (1563). The second period (16"
century) is the period when the halakhic codex began to spread in the Diaspora. The Responsa
questions were answered by sages who operated during the reign of Rabbi Yosef Caro. The
Shulchan Aruch together with its commentaries is the most widely accepted compilation of
Jewish law ever written. The third period (17¢"-19" century) is the period of the Sages who were
already operating after receiving the Halachic Codex (the Shulchan Aruch) as a guiding and
significant factor. The fourth period (20" century to the present) is characterized by modernity
and scientific and technological development. This period raised entirely new questions and
problems in the world of halakha.

One typical barrier for using deep learning to solve problems is the amount of data required to
train a model. The large number of parameters in the model that machines have to learn requires
much data. To increase the number of texts, we split documents into paragraphs, resulting in
a dataset of 604,338 paragraphs. For each period, we randomly selected 90% of the data for
training, and the remaining 10% for the test set. Table 1 shows the period distribution of the
paragraphs in our dataset. All the paragraphs are at least 10 words in length.
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4.2 Experimental setting

4.2.1 Evaluation measures

In our experiments, we compared the performance of the algorithms by four typically used text
categorization measures: accuracy, precision, recall, and F1. The scores are macro-averaged;
we first calculate the measure for each category and subsequently the average of these scores.
Therefore, all our categories were equally weighted. Classes that were never predicted by the
model were excluded from the average precision (and F1).

4.3 Neural Networks Architectures

As detailed in Section 3.2, we applied three deep learning methods for period classification.
To build the deep neural networks, we used the DL4J (Deep Learning 4 Java) open-source,
distributed, deep-learning library for the JVM? [Team, 2016] and TensorFlow open-source
machine-learning framework® [Abadi et al., 2015]. We used these libraries, each with default
hyper-parameter settings, as assessed by their authors. The models use 300-dimensional word
embeddings, generated by the word2vec skip-gram algorithm with a window size of five words
(see Section 3.2.1).

We ran all experiments on a cloud infrastructure using an Ubuntu 16 x64 Virtual Machine, with
32 cores, 128GB Memory and 200GB SSD Disk.

Next, we describe the neural network architecture for each deep-learning method:

Paragraph vectors. We used a PV model to build a paragraph classifier to yield one of four
labels; the label with the highest score was used for our classification. The PVs were generated
from the training set by the doc2vec algorithm [Le and Mikolov, 2014], which is an extension
of the word2vec algorithm where PV and word vectors are averaged to predict the next word in
a context (see Section 3.2.1). During training class label features were inserted into the same
dense vector space as the words. After training, classification of paragraphs of the test set was
performed by calculating the mean vector of the words in a paragraph, and then the paragraph
was labelled with a label feature nearest to the mean vector (in terms of cosine similarity). Our
learning rate was 0.025 (with a minimal learning rate of 0.001). We trained 10 epochs and the
batch size was 100.

Convolutional Neural Network (CNN). We directly applied Kim [2014] CNNss for the sen-
tence classification model, described in Section 3.2.2. Our CNN contains three convolutional
layers. A convolution layer involves a filter that is applied to a window of n words to produce
a new feature. Our CNN uses three filters (with window sizes of 3, 4, and 5). Subsequently,
to capture the most important feature, the model applies a max-overtime pooling operation. Fi-
nally, a fully connected softmax layer exists whose output is the probability distribution over the
labels. A Figure of the CNN architecture is presented in Section 3.2.2. We trained the network
of one epoch with a batch size of 32.

Recurrent Neural Network (RNN).  Our RNN architecture contains two layers: 1) a hidden
layer with tanh activation function. 2) a softmax layer with a multiclass cross entropy loss
function. Each word in a paragraph was vectorized by word2vec and fed into the RNN. We
applied three types of RNN models, 1) Vanilla RNN, 2) LSTM , and 3) GRU, which differs

Zhttps://deeplearning4j.org/index.html
3https://www.tensorflow.org
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Model Accuracy Precision Recall F1

Multivariate Bernoulli NB 0.7095 0.6639  0.6355 0.6437
Multinomial NB 0.7945 0.7929 0.706  0.7343
LR! 0.1924 0.5188  0.5006 0.1982
SVM? 0.1233 0.4731  0.4241 0.2047
MLP 0.2129 0.5148  0.5153 0.2211

HaCohen-Kerner et al. [2010] 0.5815 0.5288  0.3215 0.3085

! Using absolute norm L1
2 1 class excluded from average.

Table 2: Period classification results of the conventional machine-learning models

in the type of the hidden layer (as explained in Section 3.2.3). We trained the network of five
epochs with a batch size of 64 and a hidden layer of 128 neurons.

4.4 Results

4.4.1 Conventional Machine-learning methods

To establish a baseline for comparison, we tested the performance of some conventional machine-
learning methods (described in Section 3.1) on our dataset. Our dataset includes thousands

of examples and a large number of features that do not fit in a computer’s primary memory.

Thus, we used incremental learning algorithms that learn incrementally from a mini-batch of

instances. To perform the incremental methods, we used the scikit-learn open-source machine-

learning package in python* [Pedregosa et al., 2011]. Because our vocabulary corpus is ex-

tremely large (1,406,208 words) and bag-of-words model was used for feature extraction, we

selected 20,000 features, words containing at least 10 appearances in the dataset and do not

appear in more than 5% of the documents.

We investigated three types of incremental classification algorithms: 1) naive Bayes (NB): mul-
tivariate Bernoulli and multinomial, 2) linear models: logistic regression (LR) and linear sup-
port vector machine (SVM), and 3) Multilayer perceptron (MLP). Table 2 presents the results
of the conventional machine-learning models.

Surprisingly [Ng and Jordan, 2002], the NB methods outperformed the linear models and the
MLP algorithm significantly. These discriminative linear and non-linear classifiers classified
most of the paragraphs to the first or the second period. It is noteworthy that we examined the
two linear models, LR and SVM, with different regularization weights.

To complete our comparison, we tested the performance of HaCohen-Kerner et al. [2010]
method which combines conventional machine-learning models with feature engineering. HaCohen-
Kerner et al. classified the Responsa documents into two historical periods: the 19" century
and the 20" century. They obtained an accuracy of 99.68% using the logistic regression method
with four sets of stylistic features:

1. Lexical features: normalized frequencies of 958 common religious words (e.g., bible,
Jewish), 533 stopwords, and 307 summarization words (e.g., finding(s), conclusion(s))

*http://scikit-learn.org/0.19/modules/scaling strategies.html
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Model Accuracy Precision Recall F1 Comments

PV 0.5193 0.3331  0.2511 0.2363 1 class excluded from average
CNN 0.8150 0.8185 0.7446 0.7752

RNN 0.8495 0.7958  0.7747 0.7829 Gated Recurrent Unit (GRU)

Table 3: Period classification results of three deep neural network models: paragraph vectors (PV), CNN,
and RNN

2. Orthographic features: normalized number of acronyms in a sentence and normalized
number of abbreviations in a sentence.

3. Quantitative features: average number of characters in a word/sentence/paragraph/docu-
ment, average number of word tokens in a sentence/paragraph/document, average number
of sentences in a paragraph/ document, average number of paragraphs in a document, and
average number of punctuation marks.

4. Function features: normalized frequencies of sentences appeared in brackets and normal-
ized frequency of 11 non-ambiguous Hebrew pronouns.

The results of HaCohen-Kerner et al. [2010] method on our task are presented in the last row of
Table 2. Obviously, classifying documents into four historical periods is much more difficult.
Their method achieved an accuracy of 58% which is significantly lower that the NB models.

Previous work reported that the available modern Hebrew morphological analyzing tools have
poor performance on the Responsa corpus. For example, whereas the accuracy of a state-of-
the-art modern Hebrew tagger on modern Hebrew text was over 90%, on the Responsa corpus
it was only about 60% [Liebeskind et al., 2012]. Therefore, HaCohen-Kerner et al. [2010] used
the raw text and we followed the same approach.

4.4.2 Deep-learning methods

In this section, we present the period classification results of the deep-learning methods. Table
3 shows the classification results of three deep neural network models: PVs, CNN, and RNN.

The RNN and the CNN models outperform the PV model significantly. Their accuracies
(0.8495 and 0.815, respectively) are high. We illustrate the reason for the failure of the PV
model by its classification confusion matrix. Each column of the matrix represents the instances
in a predicted class while each row represents the instances in an actual class. Table 4 shows the
confusion matrix of the PV model. The model did not learn how to classify paragraphs from the
two first periods correctly. All the paragraphs from these periods were classified as belonging to
the third or fourth period. The model also hardly classified paragraphs to one of these periods.

The major reasons for the period classification difficulty are the Hebrew language with the
special characteristics of the corpus. Modern Hebrew uses Biblical Hebrew morphemes and
Mishnaic spelling increase the difficulty of distinguishing between modern and ancient terms
and renders the classification task more difficult. Responsa texts that documents that present
arguments by citing earlier sources, such as the Talmud and its commentators, legal codes,
and earlier response increases the period classification difficulty add to the already existent
difficulties. Distinguishing between an original ancient paragraph and a modern paragraph with
earlier citations further compound the difficulty.

In contrast to the PV model, the RNN (with GRU) and the CNN models learned to classify the
paragraph to four periods. Table 5 shows the confusion matrix of the CNN model.
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Predicted Period1 Period2 Period3 Period4

Actual

Period 1 0 0 0 3234
Period 2 0 0 3 5584
Period 3 2 0 282 19927
Period 4 0 0 303 31099

Table 4: Confusion matrix of the paragraph vector model

Predicted Period1 Period2 Period3 Period 4

Actual

Period 1 2026 443 399 366
Period 2 189 4076 867 455
Period 3 84 444 14074 5609
Period 4 99 104 2123 29075

Table 5: Confusion matrix of the CNN model

To better understand the confusion matrix, we converted the absolute values of the matrix to
the relative values. The predicted values of each category were divided by the total number of
paragraphs in the category. Table 6 shows the confusion matrix with the relative values. The
bold values in the diagonal correspond to the recall of the categories. In italics, for each actual
class (row), we marked the most frequent misclassified category. Many of the classification
errors were misclassifications of successive periods. This analysis is also valid for the RNN
(with GRU) model.

As mentioned in Section 4.3, we applied three types of RNN models: 1) Vanilla RNN, 2) LSTM,
and 3) GRU. Table 7 presents the classification results of these three models. The LSTM and
GRU models outperform the Vanilla model significantly. It is noteworthy that the LSTM model
did not classify any of the paragraphs to the first period. Therefore, we excluded this period
from the average precision and F1.

The accuracy improvement of the GRU model over the baseline multinomial naive Bayes model
is notable (6 points). The meaning of this result in terms of correctly classified paragraphs is
that an additional 3322 paragraphs were correctly classified.

Furthermore, whereas the RNN results can be further improved by parameters tuning or using
more sophisticated neural network models [Tang et al., 2015, Lai et al., 2015], considering the
independence assumption between the features, the baseline model is limited.

Recently, Yin et al. [2017] systematically compared CNN and RNN on a wide range of rep-
resentative NLP tasks: sentiment/relation classification, textual entailment, answer selection,

Predicted Period 1 Period2 Period3 Period 4
Actual

Period 1 0.626 0.137 0.123 0.113
Period 2 0.034 0.73 0.155 0.081
Period 3 0.004 0.022 0.696 0.278
Period 4 0.003 0.003 0.068 0.926

Table 6: Confusion matrix of the CNN model with relative values

Journal of Data Mining and Digital Humanities 14 http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal


http://jdmdh.episciences.org

Model Accuracy Precision Recall F1

Vanilla 0.6233 0.4767  0.4645 0.4334
Long Short-Term Memory (LSTM) 0.84 0.7712  0.6493 0.8112
Gated Recurrent Unit (GRU) 0.8495 0.7958 0.7747 0.7829

Table 7: Period classification results of three RNN models: Vanilla, LSTM, and GRU

question-relation matching in Freebase, Freebase path query answering and part-of-speech tag-
ging. Yin et al. concluded that the preferred DL. model depends on importance of understanding
the entire sequence. They also showed that optimization of hidden layer size and batch size is
crucial to good performance of both architectures. Bai et al. [2018] compared CNN and RNN
for sequence modeling and showed that CNN outperforms RRN across a diverse range of tasks
and datasets. They claimed that CNN should be regarded as a natural starting point even for
sequence modeling tasks.

We assume further improvements would be possible by hyper-parameter optimization for both
RNN and CNN, but a separate process with a meta-training/validation set split would be re-
quired to prevent over-fitting; we did not attempt this. With the default hyper-parameter settings,
we observed that the accuracy of the CNN model was 3% higher than the accuracy of the RNN.
The CNN is supposed to be effective for extracting position-invariant features and RNN for
modeling units in sequence. In our case, the CNN model succeeded in determining the period
by some key phrases, better than the RNN model which tried to learn context dependencies.

V  SEMANTIC CHANGES OF WORDS MEANING OVER TIME

In this section, we track and analyze the semantic changes of word meanings over time. We
adopted the continuous training protocol [Kim et al., 2014] (see Section 2.1), where the model
for each time span is initialized with the embeddings of its predecessor. We trained the word
vectors using the gensim’ open-source package [Rehtifek and Sojka, 2010].

5.1 Word Comparisons

To detect words whose usage has modified, we compared the cosine similarity between the
same words across our four different eras (Section 4.1).

First, based on the cosine similarity of words in the first period (the 11** century until the end
of the 15" century) against their fourth period (the 20" century until today) counterparts, we
extracted the most changed words. We omitted words that appear less than 500 times in our
dataset. To avoid analyzing words that significantly decreased their usage, we omitted words
that occur less than 50 times in each of the periods.

Next, to better understand how these words have changed over time, we compared their neigh-
boring words, based on the cosine similarity, for the first and the fourth periods. The shift
meaning of six words from the top 50 most changed words is illustrated in Table 8. The words
in parentheses are examples for their neighboring words®.

The words in Table 8 exhibit different behaviors in the ancient and modern periods. The differ-
ence in word behavior may come from changes in sense or changes in wording in the context.

Shttps://radimrehurek.com/gensim/
5To facilitate readability, we used a transliteration of Hebrew using Roman characters; the letters used, in
Hebrew lexico-graphic order, are abgdhwzxTiklmns pcqrst.
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# Word Similarity Ancient meaning (Period 1) Moden meaning (Period 4)

1 qr 0.1418 main part (mSm wt-meaning, uprooting (‘wqr-to uproot,
mwskm-agreed) girs-to expel)

2 ‘cm 0.2061 bone (hirk-the thigh, hcl'wt-the essence (‘iqr-main, aicwt-
ribs) quality)

3 whbn 02513 and the son (whbt-and the and understand (WDWQ-
daughter, whab-and the father) WDiiq Wmca Ql-search

for other sources, qcrti-I
shortened)

4 Dbinwnit 0.2646 medium [scale] (mqrq‘-from the medium [period] (I‘wnh-to
ground, mzibwrit-worst quality the season, wst-menstruation)
land)

5 xih 0.3096 woman giving birth (iwldt- animal (w‘wp-and chicken,
woman giving birth, ‘qrh- aprwx-chick)
childless woman)

6 wmwrh 0.3219  rebellion (swrr-rebellious), leadership (wmnhig-and a

teaching (Mhllal-a name of the
father of a famous teacher)

leader, wgawn-and a genius)

Table 8: Examples for words that changed their meaning over the years

5.2 Periods of Change

Replicating the evaluation methodology of Kim et al. [2014], to detect periods of change, we
draw the time series of a word’s distance to its neighboring words from different periods.

Figure 2 shows a graph for the word “¢r compared to its ancient neighbors, msm wt and mwskm,
and the modern neighbors, ‘wgr and girs. Figure 2 illustrates similar graphs for “c¢m, binwnit,
and wmwrh. Such graphs are useful for analyzing the evolution of words. For example, when
the typical sense of the word “cm (see Table 8, Example #2) started being “essence” and not
“bone”.

In addition, to recognize a period of change independent of neighboring words, we examined the
cosine similarity of a word against itself from a reference period (see Figure 3). Our reference
period was the first period. To determine if the change of a word during a given period is
different from that expected by chance, we plot the average cosine similarity of all words against
their reference points. In Figure 3, we draw the cosine similarity of changed words (as in
Figure 2). For comparison, we also show the similarity of unchanged words (based on the
cosine similarity of words in the first period against their fourth period counterparts). The
unchanged words are as follows: adwnnw-our master (0.8766), dinrim-dinars (monetary unit)
(0.8410), Saltm-you asked (0.8289), and kbwdk-your honor (0.8285). It is noteworthy that in
most of our examples ('gr, “‘cm, and wmwrh) the major meaning shift was between the second
(the 16" century) and third periods (the 17" through the 19" centuries). These meaning shifts
may be explained by the revival of Hebrew as a spoken language in the late 19" century.

VI CONCLUSIONS AND FUTURE WORK

In this study, we directed the task of predicting the period when a text was originally written.
The period classification of texts is an important preliminary task for diachronic lexical resource
construction.
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Figure 2: Time trend of the cosine similarity between the words “gr, “cm, binwnit, and wmwrh and their
neighboring words in the first and fourth periods.
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Figure 3: Plot of the cosine similarity of changed and unchanged words against their first period. The
broken line is the average cosine similarity of all words against their first period.
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While the efficiency of most conventional learning approaches for temporal text classification
depends on prior feature engineering, deep learning sets an important goal of automatic dis-
covery of powerful features from raw input data independent of application domains. Thus, we
adopted deep-learning algorithms that are supervised machine-learning algorithms inspired by
the structure and function of the brain called artificial neural networks.

Our Responsa corpus includes questions on various daily issues posed to rabbis and their de-
tailed rabbinic answers represents more than a thousand years of global Jewish literary creativ-
ity. The Responsa documents are divided into four periods.

We compared there typical deep learning methods for the period classification of historical texts:
PVs, CNN, and RNN. As baseline, we examined three types of conventional machine-learning
methods, NB, linear models, and MLP. The best baseline was NB. However, we observed that
the CNN and RNN models outperform both the NB baseline and the PV model significantly.
In our context, the accuracy of the CNN model was 3% higher than the accuracy of the RNN.
Yet, we assume that further improvements may be possible by hyper-parameter optimization
for both RNN and CNN.

We also tracked and analyzed the semantic changes of word meanings over time. We compared
the cosine similarity between the same words across our four different time periods to detect
words whose usage has changed. Additionally, to detect periods of change, we drew the time
series of a word’s distance to its neighboring words from different periods and examined the
cosine similarity of a word against itself from a reference period.

Our study investigated three RNN models: Vanilla, LSTM, and GRU. The GRU model achieved
an accuracy of 84.9%, a recall of 77.47%, and an F1 of 78.29%, and was better that the other
two simpler models. We plan to further explore the RNN for period classification by exploring
more sophisticated variants of the LSTM architecture [Greff et al., 2017].

In addition, more complex CNN models could be investigated, e.g., the combined models of
CNN and RNN [Tang et al., 2015, Lai et al., 2015]. We also propose incorporating the period
information into the neural network to learn diachronic-specific word embeddings [Tang et al.,
2014, Zhang and Lan, 2015].
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