Beatrice Couture ; Farah Verret ; Maxime Gohier ; Dominique Deslandres - The Challenges of HTR Model Training: Feedback from the Project Donner le gout de l'archive a l'ere numerique

jdmdh:10542 - Journal of Data Mining & Digital Humanities, 6 décembre 2023, Documents historiques et reconnaissance automatique de texte - https://doi.org/10.46298/jdmdh.10542
The Challenges of HTR Model Training: Feedback from the Project Donner le gout de l'archive a l'ere numeriqueArticle

Auteurs : Couture Beatrice 1; Verret Farah 1; Gohier Maxime 2; Deslandres Dominique 1

The arrival of handwriting recognition technologies offers new possibilities for research in heritage studies. However, it is now necessary to reflect on the experiences and the practices developed by research teams. Our use of the Transkribus platform since 2018 has led us to search for the most significant ways to improve the performance of our handwritten text recognition (HTR) models which are made to transcribe French handwriting dating from the 17th century. This article therefore reports on the impacts of creating transcribing protocols, using the language model at full scale and determining the best way to use base models in order to help increase the performance of HTR models. Combining all of these elements can indeed increase the performance of a single model by more than 20% (reaching a Character Error Rate below 5%). This article also discusses some challenges regarding the collaborative nature of HTR platforms such as Transkribus and the way researchers can share their data generated in the process of creating or training handwritten text recognition models.


Volume : Documents historiques et reconnaissance automatique de texte
Publié le : 6 décembre 2023
Accepté le : 7 novembre 2023
Soumis le : 24 décembre 2022
Mots-clés : Computer Science - Computer Vision and Pattern Recognition,Computer Science - Machine Learning
Financement :
    Source : OpenAIRE Graph
  • Deep Drug Discovery and Deployment; Code: PTDC/CCI-BIO/29266/2017
  • Financeur: Social Sciences and Humanities Research Council

Statistiques de consultation

Cette page a été consultée 738 fois.
Le PDF de cet article a été téléchargé 316 fois.