Thibault Clérice - You Actually Look Twice At it (YALTAi): using an object detection approach instead of region segmentation within the Kraken engine

jdmdh:9806 - Journal of Data Mining & Digital Humanities, 26 décembre 2023, Documents historiques et reconnaissance automatique de texte - https://doi.org/10.46298/jdmdh.9806
You Actually Look Twice At it (YALTAi): using an object detection approach instead of region segmentation within the Kraken engineArticle

Auteurs : Thibault Clérice ORCID1,2,3,4,5

Layout Analysis (the identification of zones and their classification) is the first step along line segmentation in Optical Character Recognition and similar tasks. The ability of identifying main body of text from marginal text or running titles makes the difference between extracting the work full text of a digitized book and noisy outputs. We show that most segmenters focus on pixel classification and that polygonization of this output has not been used as a target for the latest competition on historical document (ICDAR 2017 and onwards), despite being the focus in the early 2010s. We propose to shift, for efficiency, the task from a pixel classification-based polygonization to an object detection using isothetic rectangles. We compare the output of Kraken and YOLOv5 in terms of segmentation and show that the later severely outperforms the first on small datasets (1110 samples and below). We release two datasets for training and evaluation on historical documents as well as a new package, YALTAi, which injects YOLOv5 in the segmentation pipeline of Kraken 4.1.


Volume : Documents historiques et reconnaissance automatique de texte
Publié le : 26 décembre 2023
Accepté le : 20 décembre 2023
Soumis le : 19 juillet 2022
Mots-clés : kraken,layout segmentation,yolo,htr,ocr,object detection,historical document,kraken,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI],[SHS]Humanities and Social Sciences

Statistiques de consultation

Cette page a été consultée 919 fois.
Le PDF de cet article a été téléchargé 240 fois.