Lev Kharlashkin ; Melany Macias ; Leo Huovinen ; Mika Hämäläinen - Predicting Sustainable Development Goals Using Course Descriptions -- from LLMs to Conventional Foundation Models

jdmdh:13127 - Journal of Data Mining & Digital Humanities, 29 avril 2024, NLP4DH - https://doi.org/10.46298/jdmdh.13127
Predicting Sustainable Development Goals Using Course Descriptions -- from LLMs to Conventional Foundation ModelsArticle

Auteurs : Lev Kharlashkin ORCID; Melany Macias ; Leo Huovinen ; Mika Hämäläinen ORCID

    We present our work on predicting United Nations sustainable development goals (SDG) for university courses. We use an LLM named PaLM 2 to generate training data given a noisy human-authored course description input as input. We use this data to train several different smaller language models to predict SDGs for university courses. This work contributes to better university level adaptation of SDGs. The best performing model in our experiments was BART with an F1-score of 0.786.


    Volume : NLP4DH
    Publié le : 29 avril 2024
    Accepté le : 9 avril 2024
    Soumis le : 27 février 2024
    Mots-clés : Computer Science - Computation and Language

    Statistiques de consultation

    Cette page a été consultée 626 fois.
    Le PDF de cet article a été téléchargé 217 fois.