Yehor Tereshchenko ; Mika K Hämäläinen - Efficient Toxicity Detection in Gaming Chats: A Comparative Study of Embeddings, Fine-Tuned Transformers and LLMs

jdmdh:16280 - Journal of Data Mining & Digital Humanities, 14 octobre 2025, NLP4DH - https://doi.org/10.46298/jdmdh.16280
Efficient Toxicity Detection in Gaming Chats: A Comparative Study of Embeddings, Fine-Tuned Transformers and LLMsArticle

Auteurs : Tereshchenko, Yehor 1; Hämäläinen, Mika K ORCID1

  • 1 Helsinki Metropolia University of Applied Sciences

This paper presents a comprehensive comparative analysis of Natural Language Processing (NLP) methods for automated toxicity detection in online gaming chats. Traditional machine learning models with embeddings, large language models (LLMs) with zero-shot and few-shot prompting, fine-tuned transformer models, and retrieval-augmented generation (RAG) approaches are evaluated. The evaluation framework assesses three critical dimensions: classification accuracy, processing speed, and computational costs. A hybrid moderation system architecture is proposed that optimizes human moderator workload through automated detection and incorporates continuous learning mechanisms. The experimental results demonstrate significant performance variations across methods, with fine-tuned DistilBERT achieving optimal accuracy-cost trade-offs. The findings provide empirical evidence for deploying cost-effective, efficient content moderation systems in dynamic online gaming environments.


Volume : NLP4DH
Publié le : 14 octobre 2025
Accepté le : 30 août 2025
Soumis le : 4 août 2025

Fichiers

Nom Taille
Efficient_Toxicity_Detection_in_Gaming_Chats.pdf
md5 : cc2b57c4eae85f11605a3ff7ffe41667
386.66 KB