Hermann Moisl - How to visualize high-dimensional data: a roadmap

jdmdh:5594 - Journal of Data Mining & Digital Humanities, 23 décembre 2020, Numéro spécial sur les visualisations en linguistique historique - https://doi.org/10.46298/jdmdh.5594
How to visualize high-dimensional data: a roadmapArticle

Auteurs : Hermann Moisl 1

Discovery of the chronological or geographical distribution of collections of historical text can be more reliable when based on multivariate rather than on univariate data because multivariate data provide a more complete description. Where the data are high-dimensional, however, their complexity can defy analysis using traditional philological methods. The first step in dealing with such data is to visualize it using graphical methods in order to identify any latent structure. If found, such structure facilitates formulation of hypotheses which can be tested using a range of mathematical and statistical methods. Where, however, the dimensionality is greater than 3, direct graphical investigation is impossible. The present discussion presents a roadmap of how this obstacle can be overcome, and is in three main parts: the first part presents some fundamental data concepts, the second describes an example corpus and a high-dimensional data set derived from it, and the third outlines two approaches to visualization of that data set: dimensionality reduction and cluster analysis.


Volume : Numéro spécial sur les visualisations en linguistique historique
Publié le : 23 décembre 2020
Accepté le : 15 décembre 2020
Soumis le : 21 juin 2019
Mots-clés : dimensionality reduction,high dimensionality,multivariate data,Data visualization,cluster analysis,[SHS]Humanities and Social Sciences

Statistiques de consultation

Cette page a été consultée 2297 fois.
Le PDF de cet article a été téléchargé 2219 fois.