Yuri Bizzoni ; Pascale Moreira ; Mads Rosendahl Thomsen ; Kristoffer L. Nielbo - The Fractality of Sentiment Arcs for Literary Quality Assessment: the Case of Nobel Laureates

jdmdh:11406 - Journal of Data Mining & Digital Humanities, August 13, 2023, NLP4DH - https://doi.org/10.46298/jdmdh.11406
The Fractality of Sentiment Arcs for Literary Quality Assessment: the Case of Nobel LaureatesArticle

Authors: Yuri Bizzoni ORCID1; Pascale Moreira 1; Mads Rosendahl Thomsen ORCID1; Kristoffer L. Nielbo ORCID1

In the few works that have used NLP to study literary quality, sentiment and emotion analysis have often been considered valuable sources of information. At the same time, the idea that the nature and polarity of the sentiments expressed by a novel might have something to do with its perceived quality seems limited at best. In this paper, we argue that the fractality of narratives, specifically the longterm memory of their sentiment arcs, rather than their simple shape or average valence, might play an important role in the perception of literary quality by a human audience. In particular, we argue that such measure can help distinguish Nobel-winning writers from control groups in a recent corpus of English language novels. To test this hypothesis, we present the results from two studies: (i) a probability distribution test, where we compute the probability of seeing a title from a Nobel laureate at different levels of arc fractality; (ii) a classification test, where we use several machine learning algorithms to measure the predictive power of both sentiment arcs and their fractality measure. Lastly, we perform another experiment to examine whether arc fractality may be used to distinguish more or less popular works within the Nobel canon itself, looking at the probability of higher GoodReads’ ratings at different levels of arc fractality. Our findings seem to indicate that despite the competitive and complex nature of the task, the populations of Nobel and non-Nobel laureates seem to behave differently and can to some extent be told apart by a classifier. Moreover, the probability of Nobel titles having better ratings appears higher at different levels of arc fractality.


Volume: NLP4DH
Published on: August 13, 2023
Accepted on: July 6, 2023
Submitted on: May 31, 2023
Keywords: computational narratology; sentiment analysis; fractal analysis; literary quality assessment; stylometry

Files

Name Size
NLP4DH22_final.pdf.pdf
md5: 90929a26f15d810bb6be1049190ca455
1.59 MB

Consultation statistics

This page has been seen 1119 times.
This article's PDF has been downloaded 306 times.