Mohamed HANNANI ; Abdelhadi SOUDI ; Kristof Van Laerhoven - Evaluating ChatGPT-4 and Machine Learning Models for Sentiment Analysis on a Multi-Script Moroccan Arabic Corpus: Insights, Challenges, and Future Directions

jdmdh:15092 - Journal of Data Mining & Digital Humanities, 2 avril 2025, NLP4DH - https://doi.org/10.46298/jdmdh.15092
Evaluating ChatGPT-4 and Machine Learning Models for Sentiment Analysis on a Multi-Script Moroccan Arabic Corpus: Insights, Challenges, and Future DirectionsArticle

Auteurs : Mohamed HANNANI ORCID1; Abdelhadi SOUDI ORCID2; Kristof Van Laerhoven ORCID1

  • 1 University of Siegen
  • 2 École Nationale de L'Industrie Minérale in Rabat

The application of Large Language Models (LLMs) to low-resource languages and dialects, such as Moroccan Arabic (MA), remains a relatively unexplored area. This study evaluates the performance of ChatGPT-4, fine-tuned BERT models, FastText embeddings, and traditional machine learning approaches for sentiment analysis on MA. Using two publicly available MA datasets—the Moroccan Arabic Corpus (MAC) from X (formerly Twitter) and the Moroccan Arabic YouTube Corpus (MYC)—we assess the ability of these models to detect sentiment across different contexts. Although fine-tuned models performed well, ChatGPT-4 exhibited substantial potential for sentiment analysis, even in zero-shot scenarios. However, performance on MA was generally lower than on Modern Standard Arabic (MSA), attributed to factors such as regional variability, lack of standardization, and limited data availability. Future work should focus on expanding and standardizing MA datasets, as well as developing new methods like combining FastText and BERT embeddings with attention mechanisms to improve performance on this challenging dialect. 


Volume : NLP4DH
Rubrique : Humanités numériques en langues
Publié le : 2 avril 2025
Accepté le : 9 février 2025
Soumis le : 16 janvier 2025

Statistiques de consultation

Cette page a été consultée 95 fois.
Le PDF de cet article a été téléchargé 53 fois.