1. Processing the structure of documents: Logical Layout Analysis of historical newspapers in French

Nicolas Gutehrlé ; Iana Atanassova.
Background. In recent years, libraries and archives led important digitisation campaigns that opened the access to vast collections of historical documents. While such documents are often available as XML ALTO documents, they lack information about their logical structure. In this paper, we address the problem of Logical Layout Analysis applied to historical documents in French. We propose a rule-based method, that we evaluate and compare with two Machine-Learning models, namely RIPPER and Gradient Boosting. Our data set contains French newspapers, periodicals and magazines, published in the first half of the twentieth century in the Franche-Comté Region. Results. Our rule-based system outperforms the two other models in nearly all evaluations. It has especially better Recall results, indicating that our system covers more types of every logical label than the other two models. When comparing RIPPER with Gradient Boosting, we can observe that Gradient Boosting has better Precision scores but RIPPER has better Recall scores. Conclusions. The evaluation shows that our system outperforms the two Machine Learning models, and provides significantly higher Recall. It also confirms that our system can be used to produce annotated data sets that are large enough to envisage Machine Learning or Deep Learning approaches for the task of Logical Layout Analysis. Combining rules and Machine Learning models into hybrid systems could potentially provide even better performances. […]
Section: Digital humanities in languages

2. Enhancing Legal Argument Mining with Domain Pre-training and Neural Networks

Gechuan Zhang ; Paul Nulty ; David Lillis.
The contextual word embedding model, BERT, has proved its ability on downstream tasks with limited quantities of annotated data. BERT and its variants help to reduce the burden of complex annotation work in many interdisciplinary research areas, for example, legal argument mining in digital humanities. Argument mining aims to develop text analysis tools that can automatically retrieve arguments and identify relationships between argumentation clauses. Since argumentation is one of the key aspects of case law, argument mining tools for legal texts are applicable to both academic and non-academic legal research. Domain-specific BERT variants (pre-trained with corpora from a particular background) have also achieved strong performance in many tasks. To our knowledge, previous machine learning studies of argument mining on judicial case law still heavily rely on statistical models. In this paper, we provide a broad study of both classic and contextual embedding models and their performance on practical case law from the European Court of Human Rights (ECHR). During our study, we also explore a number of neural networks when being combined with different embeddings. Our experiments provide a comprehensive overview of a variety of approaches to the legal argument mining task. We conclude that domain pre-trained transformer models have great potential in this area, although traditional embeddings can also achieve strong performance when combined with additional neural network […]

3. Adapting vs. Pre-training Language Models for Historical Languages

Enrique Manjavacas ; Lauren Fonteyn.
As large language models such as BERT are becoming increasingly popular in Digital Humanities (DH), the question has arisen as to how such models can be made suitable for application to specific textual domains, including that of 'historical text'. Large language models like BERT can be pretrained from scratch on a specific textual domain and achieve strong performance on a series of downstream tasks. However, this is a costly endeavour, both in terms of the computational resources as well as the substantial amounts of training data it requires. An appealing alternative, then, is to employ existing 'general purpose' models (pre-trained on present-day language) and subsequently adapt them to a specific domain by further pre-training. Focusing on the domain of historical text in English, this paper demonstrates that pre-training on domain-specific (i.e. historical) data from scratch yields a generally stronger background model than adapting a present-day language model. We show this on the basis of a variety of downstream tasks, ranging from established tasks such as Part-of-Speech tagging, Named Entity Recognition and Word Sense Disambiguation, to ad-hoc tasks like Sentence Periodization, which are specifically designed to test historically relevant processing.
Section: Digital humanities in languages

4. Fractal Sentiments and Fairy Tales - Fractal scaling of narrative arcs as predictor of the perceived quality of Andersen's fairy tales

Yuri Bizzoni ; Telma Peura ; Mads Thomsen ; Kristoffer Nielbo.
This article explores the sentiment dynamics present in narratives and their contribution to literary appreciation. Specifically, we investigate whether a certain type of sentiment development in a literary narrative correlates with its quality as perceived by a large number of readers. While we do not expect a story's sentiment arc to relate directly to readers' appreciation, we focus on its internal coherence as measured by its sentiment arc's level of fractality as a potential predictor of literary quality. To measure the arcs' fractality we use the Hurst exponent, a popular measure of fractal patterns that reflects the predictability or self-similarity of a time series. We apply this measure to the fairy tales of H.C. Andersen, using GoodReads' scores to approximate their level of appreciation. Based on our results we suggest that there might be an optimal balance between predictability and surprise in a sentiment arcs' structure that contributes to the perceived quality of a narrative text.

5. Word Sense Induction with Attentive Context Clustering

Moshe Stekel ; Amos Azaria ; Shai Gordin.
This paper presents ACCWSI (Attentive Context Clustering WSI), a method for Word Sense Induction, suitable for languages with limited resources. Pretrained on a small corpus and given an ambiguous word (a query word) and a set of excerpts that contain it, ACCWSI uses an attention mechanism for generating context-aware embeddings, distinguishing between the different senses assigned to the query word. These embeddings are then clustered to provide groups of main common uses of the query word. We show that ACCWSI performs well on the SemEval-2 2010 WSI task. ACCWSI also demonstrates practical applicability for shedding light on the meanings of ambiguous words in ancient languages, such as Classical Hebrew and Akkadian. In the near future, we intend to turn ACCWSI into a practical tool for linguists and historians.

6. Hate speech, Censorship, and Freedom of Speech: The Changing Policies of Reddit

Elissa Nakajima Wickham ; Emily Öhman.
This paper examines the shift in focus on content policies and user attitudes on the social media platform Reddit. We do this by focusing on comments from general Reddit users from five posts made by admins (moderators) on updates to Reddit Content Policy. All five concern the nature of what kind of content is allowed to be posted on Reddit, and which measures will be taken against content that violates these policies. We use topic modeling to probe how the general discourse for Redditors has changed around limitations on content, and later, limitations on hate speech, or speech that incites violence against a particular group. We show that there is a clear shift in both the contents and the user attitudes that can be linked to contemporary societal upheaval as well as newly passed laws and regulations, and contribute to the wider discussion on hate speech moderation.